JDR Vol.18 No.4 pp. 319-328
doi: 10.20965/jdr.2023.p0319


Preliminary System for the Estimation of Peak Ground Acceleration Distribution in Metropolitan Lima and Callao: Application in Recent Seismic Events

Carlos Gonzales*1,† ORCID Icon, Roger Garay*2, Luis Moya*3 ORCID Icon, Fernando Lazares*1 ORCID Icon, Zenon Aguilar*1, Diana Calderon*1 ORCID Icon, Miguel Diaz*1 ORCID Icon, Masashi Matsuoka*4 ORCID Icon, and Carlos Zavala*1 ORCID Icon

*1Japan Peru Center for Earthquake Engineering Research and Disaster Mitigation (CISMID), National University of Engineering (UNI)
Av. Tupac Amaru 1150, Lima 15333, Peru

Corresponding author

*2Faculty of Civil Engineering, National University of Engineering (UNI)
Lima, Peru

*3GERDIS Research Group, Department of Engineering, Pontificia Universidad Católica del Perú
Lima, Peru

*4School of Environment and Society, Tokyo Institute of Technology
Yokohama, Japan

January 12, 2023
May 1, 2023
June 1, 2023
seismic network, amplification factors, geospatial interpolation, peak ground acceleration, Lima

The conjunction of seismic records and site effect parameters can lead to the adequate estimation of seismic indexes in urban areas. In this regard, this study uses the map of soil amplification factors obtained in previous studies and the availability of time history waveforms at different locations throughout Metropolitan Lima and Callao to estimate the geospatial distribution of maximum values of horizontal acceleration after the occurrence of earthquakes. Results for three earthquakes of intermediate magnitude and distinct epicenter locations are publicly available in an online system created within the framework of this study (Amaru Peru) and showed that amplified motions could be mainly observed in the lowlands of populated slopes as well as in the eolian sandy deposits.

Cite this article as:
C. Gonzales, R. Garay, L. Moya, F. Lazares, Z. Aguilar, D. Calderon, M. Diaz, M. Matsuoka, and C. Zavala, “Preliminary System for the Estimation of Peak Ground Acceleration Distribution in Metropolitan Lima and Callao: Application in Recent Seismic Events,” J. Disaster Res., Vol.18 No.4, pp. 319-328, 2023.
Data files:
  1. [1] A. Ansal (Ed.), “Perspectives on European Earthquake Engineering and Seismology,” Vol.1, pp. 53-95, Springer Open, 2014.
  2. [2] M. Matsuoka and N. Yamamoto, “Web-based quick estimation system of strong ground motion maps using engineering geomorphologic classification map and observed seismic records,” Proc. of the 15th World Conf. on Earthquake Engineering 2012, 2012.
  3. [3] E. Silgado Ferro, “Historia de los sismos más notables ocurridos en el Perú (1513-1974),” Instituto de Geología y Minería, 1978 (in Spanish).
  4. [4] R. Husid, A. F. Espinosa, and J. De Las Casas, “The Lima earthquake of October 3, 1974: Damage distribution,” Bulletin of the Seismological Society of America, Vol.67, No.5, pp. 1441-1472, 1977.
  5. [5] F. Miranda, “La descentralización centralista en el Perú: entre la crisis y el crecimiento 1970-2014,” Investigaciones Sociales, Vol.19, No.34, pp. 153-167, 2015 (in Spanish).
  6. [6] L. Moya, F. Garcia, C. Gonzales, M. Diaz, C. Zavala, M. Estrada, F. Yamazaki, E. Mas, and B. Adriano, “Brief communication: Radar images for monitoring informal urban settlements in vulnerable zones in Lima, Peru,” Nat. Hazards Earth Syst. Sci., Vol.22, pp. 65-70, 2022.
  7. [7] N. Pulido, Z. Aguilar, H. Tavera, M. Chlieh, D. Calderon, T. Sekiguchi, S. Nakai, and F. Yamazaki, “Scenario source models and strong motion for future mega-earthquakes: Application to Lima, Central Peru,” Bulletin of the Seismological Society of America, Vol.105, No.1, pp. 368-386, 2015.
  8. [8] D. Calderon, Z. Aguilar, F. Lazares, S. Alarcon, and S. Quispe, “Development of a seismic microzoning map for Lima city,” J. Disaster Res., Vol.9, No.6, pp. 939-945, 2014.
  9. [9] C. F. Knudson and V. Perez, “Accelerograph records from Lima Peru,” Proc. of the 6th World Conf. on Earthquake Engineering, pp. 338-344, 1977.
  10. [10] H. Tavera, I. Bernal, F. Strasser, M. C. Arango-Gaviria, J. E. Alarcon, and J. J. Bommer, “Ground motions observed during the 15 August 2007 Pisco, Peru, earthquake,” Bull. Earthquake Engineering, Vol.7, pp. 71-111, 2009.
  11. [11] R. E. Anthony, A. T. Ringler, D. C. Wilson, and E. Wolin, “Do low-cost seismographs perform well enough for your network? An overview of laboratory tests and field observations of the OSOP Raspberry Shake 4D,” Seismological Research Letters, Vol.9, No.1, pp. 219-228, 2018.
  12. [12] Incorporated Research Institutions for Seismology, “SEED Reference Manual,” International Federation of Digital Seismograph Networks, Incorporated Research Institutions for Seismology, United States Geological Survey, 2012.
  13. [13] Helmolthz Center Potsdam, GFZ German Research Centre for Geosciences and gempa GmbH, The SeisComP Seismological Software Package, GFZ Data Services, 2008.
  14. [14] CEOIS. [Accessed December 12, 2022]
  15. [15] T. Sekiguchi, D. Calderon, S. Nakai, Z. Aguilar, and F. Lazares, “Evaluation of Surface Soil Amplification for Wide Areas in Lima, Peru,” J. Disaster Res., Vol.8, No.2, pp. 259-265, 2013.
  16. [16] R. Garay, L. Moya, C. Gonzales, F. Lazares, M. Diaz, C. Zavala, F. Yamazaki, D. Calderon, and K. Huerta, “Development of an interpolation scheme for seismic indexes in Lima Metropolitan, Peru,” Tecnia, Vol.32, No.1, pp. 1-7, 2022.
  17. [17] M. A. Oliver and R. Webster, “Basic steps in geostatistics: The variogram and Kriging,” Springer Cham, 2015.
  18. [18] V. De Rubeis, P. Tosi, C. Gasparini, and A. Solipaca, “Application of Krigging Technique to Seismic Intensity Data,” Bulletin of the Seismological Society of America, Vol.95, No.2, pp. 540-548, 2005.
  19. [19] IGP. [Accessed December 12, 2022]
  20. [20] UPGFIC. [Accessed December 12, 2022]
  21. [21] IGP, CENSIS. [Accessed November 28, 2021]
  22. [22] C. Gonzales, T. Sekiguchi, and S. Nakai, “Parametric study on the seismic response of two contrasting populated slopes in Lima, Peru,” Proc. of the 16th Pan-American Conf. on Soil Mechanics and Geotechnical Engineering, pp. 2009-2016, 2019.
  23. [23] C. Gonzales, S. Nakai, T. Sekiguchi, D. Calderon, Z. Aguilar, and F. Lazares, “Analysis of topographic effects in dynamic response of a typical rocky populated slope in Lima, Peru,” J. Disaster Res., Vol.9, No.6, pp. 946-953, 2014.
  24. [24] H. Tavera, E. Centeno, and C. Mamani, “Sismo de Lima del 07 de enero, 2022 (M5.6) y niveles de sacudimiento del suelo en Lima y Callao,” Informe Técnico N°003-2022/IGP Ciencias de la Tierra Sólida, 2022 (in Spanish).
  25. [25] W. R. Stephenson, R. A. Benites, and P. N. Davenport, “Localized coherent response of the La Molina basin (Lima, Peru) to earthquakes, and future approaches suggested by Parkway basin (New Zealand) experience,” Soil Dynamics and Earthquake Engineering, Vol.29, No.10, pp. 1347-1357, 2009.
  26. [26] J. Zahradnik and F. Hron, “Seismic ground motion of sedimentary valleys – Example La Molina, Lima, Peru,” J. of Geophysics, Vol.62, No.1, pp. 31-37, 1987.
  27. [27] S. M. Day, R. Graves, J. Bielak, D. Dreger, S. Larsen, K. B. Olsen, A. Pitarka, and L. Ramirez-Guzman, “Model for Basin Effects on Long-Period Response Spectra in Southern California,” Earthquake Spectra, Vol.24, No.1, pp. 257-277, 2008.
  28. [28] H. Si, S. Midorikawa, and T. Kishida, “Development of NGA-Sub Ground Motion Model of 5%-Damped Pseudo-Spectral Acceleration Based on Database for Subduction Earthquakes in Japan,” Earthquake Spectra, Vol.38, No.4, pp. 2682-2706, 2022.
  29. [29] H. Tavera and C. Mamani, “Sismo de Chilca del 12 de mayo, 2022 (M5.5) y niveles de sacudimiento del suelo,” Informe Técnico N°016-2022/IGP Ciencias de la Tierra Sólida, pp. 1-25, 2022 (in Spanish).
  30. [30] Amaru Peru. [Accessed January 4, 2023]

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on May. 10, 2024