JDR Vol.17 No.5 pp. 716-723
doi: 10.20965/jdr.2022.p0716


Experimental Constraints on the H2O-Saturated Plagioclase Liquidus and the Storage Depth of the Izu-Oshima 1986B Basaltic Andesite Melt

Ryoya Oida*1,*2, Hidemi Ishibashi*3,†, Akihiko Tomiya*2, Masashi Ushioda*2, Natsumi Hokanishi*4, and Atsushi Yasuda*4

*1Graduate School of Integrated Science and Technology, Shizuoka University
836 Ohya, Suruga-ku, Shizuoka, Shizuoka 422-8529, Japan

*2Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan

*3Department of Geosciences, Faculty of Science, Shizuoka University, Shizuoka, Japan

Corresponding author

*4Earthquake Research Institute, The University of Tokyo, Tokyo, Japan

January 8, 2022
May 25, 2022
August 1, 2022
Izu-Oshima volcano, pre-eruptive condition, plagioclase liquidus, magma chamber, high PT experiment

High-temperature melting and crystallization experiments were carried out at pressures from 1 atm to 196 MPa and under H2O-saturated conditions on the basaltic andesite melt of the Izu-Oshima 1986B eruption (i.e., the BM melt), using a 1-atmosphere fO2-controlled furnace and an internally heated pressure vessel. These data were used to constrain the H2O-saturated plagioclase liquidus (HSPL) of the melt. The fO2 conditions were controlled by a mixed H2-CO2 gas at the Ni-NiO (NNO) buffer for the 1 atm experiments, but were not controlled for the high-pressure experiments. Plagioclase is the liquidus phase at 1 atm, whereas early saturation of Fe-Ti oxide above the plagioclase liquidus occurred in the high-pressure experiments due to the elevated fO2 conditions. The HSPL temperature decreases from 1172 ± 8°C to 1030 ± 20°C as the pressure increases from 1 atm to 196 MPa. A combination of previously proposed models for the plagioclase liquidus and melt H2O-solubility can predict the experimentally determined HSPL temperatures, even if oxidation-induced magnetite crystallization occurs. Using these models and the previously reported pre-eruptive temperature of ∼1100 ± 30°C, we estimate the pre-eruptive pressure conditions of the BM melt to be 42-32+48 MPa, which corresponds to depths of 1.9-1.4+1.9 km. The estimated depth is consistent with that of the shallow active dikes previously identified from geophysical studies, suggesting that the BM melt was derived from a small, shallow magma chamber formed in the shallow dike region.

Cite this article as:
R. Oida, H. Ishibashi, A. Tomiya, M. Ushioda, N. Hokanishi, and A. Yasuda, “Experimental Constraints on the H2O-Saturated Plagioclase Liquidus and the Storage Depth of the Izu-Oshima 1986B Basaltic Andesite Melt,” J. Disaster Res., Vol.17 No.5, pp. 716-723, 2022.
Data files:
  1. [1] Japan Meteorological Agency Web site for the historical eruption list of Izu-Oshima volcano, (in Japanese) [accessed December 2, 2021]
  2. [2] K. Endo, T. Chiba, H. Taniguchi, M. Sumita, S. Tachikawa, T. Miyahara, R. Uno, and N. Miyaji, “Tephrochronological study on the 1986-1987 eruptions of Izu-Oshima volcano, Japan,” Bull. Volcanol. Soc. Japan 2nd Ser., Vol.33, No.SPCL, pp. S32-S51, 1988 (in Japanese).
  3. [3] H. Ishibashi, and R. Oida, “The effects of temperature on decompression-driven crystallization and eruption dynamics of mafic magma: A case study of the 1986 basaltic andesite melt from Izu-Oshima volcano, Japan,” Geosci. Repts. Shizuoka Univ., No.45, pp. 55-66, 2018 (in Japanese).
  4. [4] S. Nakano and T. Yamamoto, “Major element chemistry of products of the 1986 eruption of Izu-Oshima Volcano,” Bull. Geol. Surv. Japan, Vol.38, No.11, pp. 631-647, 1987 (in Japanese).
  5. [5] T. Fujii, S. Aramaki, T. Kaneko, K. Ozawa, Y. Kawanabe, and T. Fukuoka, “Petrology of the lavas and ejecta of the November, 1986 eruption of Izu-Oshima volcano,” Bull. Volcanol. Soc. Japan 2nd Ser., Vol.33, pp. S234-254, 1988 (in Japanese).
  6. [6] S. Nakano, T. Yamamoto, A. Takada, and T. Soya, “Chemical variation of fissure eruption products at post-caldera Y5 stage of Izu-Oshima volcano,” Bull. Volcanol. Soc. Japan 2nd Ser., Vol.33, No.1, pp. 31-35, 1988 (in Japanese).
  7. [7] Y. Ida, “Magma chamber and eruptive processes at Izu-Oshima volcano, Japan: Buoyancy control of magma migration,” J. Volcanol. Geotherm. Res., Vol.66, Nos.1-4, pp. 53-67, 1995.
  8. [8] H. Mikada, H. Watanabe, and S. Sakashita, “Evidence for subsurface magma bodies beneath Izu-Oshima volcano inferred from a seismic scattering analysis and possible interpretation of the magma plumbing system of the 1986 eruptive activity,” Phys. Earth Planet. Inter., Vol.104, Nos.1-3, pp. 257-269, 1997.
  9. [9] M. Hamada, T. Kawamoto, E. Takahashi, and T. Fujii, “Polybaric degassing of island arc low-K tholeiitic basalt magma recorded by OH concentrations in Ca-rich plagioclase,” Earth Planet. Sci. Lett., Vol.308, Nos.1-2, pp. 259-266, 2011.
  10. [10] T. Kuritani, A. Yamaguchi, S. Fukumitsu, M. Nakagawa, A. Matsumoto, and T. Yokoyama, “Magma plumbing system at Izu-Oshima volcano, Japan: Constraints from petrological and geochemical analyses,” Front. Earth Sci., Vol.6, Article No.178, 2018.
  11. [11] K. V. Cashman, R. S. J. Sparks, and J. D. Blundy, “Vertically extensive and unstable magmatic systems: A unified view of igneous processes,” Science, Vol.355, No.6331, doi: 10.1126/science.aag3055, 2017.
  12. [12] M. Hashimoto and T. Tada, “Crustal deformation associated with the 1986 fissure eruption of Izu-Oshima volcano, Japan, and their tectonic significance,” Phys. Earth Planet. Inter., Vol.60, Nos.1-4, pp. 324-338, 1990.
  13. [13] S. Onizawa, H. Mikada, H. Watanabe, and S. Sakashita, “A method for simultaneous velocity and density inversion and its application to exploration of subsurface structure beneath Izu-Oshima volcano, Japan,” Earth Planets Space, Vol.54, No.8, pp. 803-817, 2002.
  14. [14] K. Aizawa, R. Yoshimura, and N. Oshiman, “Splitting of the Philippine Sea Plate and a magma chamber beneath Mt. Fuji,” Geophys. Res. Lett., Vol.31, No.9, Article No.L09603, 2004.
  15. [15] K. D. Putirka, “Thermometers and barometers for volcanic systems,” Rev. Mineral. Petrol., Vol.69, No.1, pp. 61-120, 2008.
  16. [16] S. Newman and J. B. Lowenstern, “VolatileCalc: A silicate melt–H2O–CO2 solution model written in Visual Basic for excel,” Comput. Geosci., Vol.28, No.5, pp. 597-604, 2002.
  17. [17] P. J. Wallace, “Volatiles in subduction zone magmas: Concentrations and fluxes based on melt inclusion and volcanic gas data,” J. Volcanol. Geotherm. Res., Vol.140, Nos.1-3, pp. 217-240, 2005.
  18. [18] G. A. R. Gualda, M. S. Ghiorso, R. V. Lemons, and T. L. Carley, “Rhyolite-MELTS: A modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems,” J. Petrol., Vol.53, No.5, pp. 875-890, 2012.
  19. [19] N. Hokanishi, A. Yasuda, and S. Nakada, “Major and trace element analysis of silicate rocks using fused glass beads with and X-ray fluorescence spectrometer,” Bull. Earthq. Res. Inst. Univ. Tokyo, Vol.90, pp. 1-14, 2015 (in Japanese).
  20. [20] D. C. Presnall and N. L. Brenner, “A method for studying iron silicate liquids under reducing conditions with negligible iron loss,” Geochim. Cosmochim. Acta, Vol.38, No.12, pp. 1785-1786, IN1, 1787-1788, 1974.
  21. [21] I. S. E. Carmichael, “The redox states of basic and silicic magmas: A reflection of their source regions?,” Contrib. Mineral. Petrol., Vol.106, No.2, pp. 129-141, 1991.
  22. [22] K. A. Kelley and E. Cottrell, “Water and the oxidation state of subduction zone magmas,” Science, Vol.325, No.5940, pp. 605-607, 2009.
  23. [23] T. Kawamoto and K. Hirose, “Au-Pd sample containers for melting experiments on iron and water bearing systems,” Eur. J. Mineral., Vol.6, No.3, pp. 381-385, 1994.
  24. [24] A. Tomiya, E. Takahashi, N. Furukawa, and T. Suzuki, “Depth and evolution of a silicic magma chamber: Melting experiments on a low-K rhyolite from Usu volcano, Japan,” J. Petrol., Vol.51, No.6, pp. 1333-1354, 2010.
  25. [25] D. A. Coulthard, Jr., G. F. Zellmer, A. Tomiya, S. Jégo, and R. Brahm, “Petrogenetic implications of chromite-seeded boninite crystallization experiments: Providing a basis for chromite-melt diffusion chronometry in an oxybarometric context,” Geochim. Cosmochim. Acta, Vol.297, pp. 179-202, 2021.
  26. [26] M. Makino, T. Nakatsuka, S. Okuma, and T. Kaneko, “Aeromagnetic anomalies over the Izu-Oshima volcano,” Bull. Volcanol. Soc. Japan 2nd Ser., Vol.33, No.SPCL, pp. S217-S223, 1988 (in Japanese).
  27. [27] K. Yamaoka, H. Watanabe, and S. Sakashita, “Seismicity during the 1986 eruption of Izu-Oshima volcano,” Bull. Volcanol. Soc. Japan 2nd Ser., Vol.33, No.SPCL, pp. S91-S101, 1988 (in Japanese).
  28. [28] C. E. Lesher and F. J. Spera, “Chapter 5 – Thermodynamic and transport properties of silicate melts and magmas,” H. Sigurdsson, B. Houghton, S. R. McNutt, H. Rymer, and J. Stix (Eds.), “The Encyclopedia of Volcanoes,” 2nd Edition, pp. 113-141, Elsevier, 2015.
  29. [29] D. Turcotte and G. Schubert, “Geodynamics,” 3rd Edition, Cambridge University Press, 623pp., 2014.
  30. [30] D. H. Lindsley, “Pyroxene thermometry,” Amer. Mineral., Vol.68, Nos.5-6, pp. 477-493, 1983.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 22, 2024