single-dr.php

JDR Vol.17 No.5 pp. 620-629
(2022)
doi: 10.20965/jdr.2022.p0620

Paper:

A Simple Method for the Analysis of Fumarolic Gases Using Response-Adjusted Sensors with a UAV

Kouki Matsu’ura*, Akihiko Terada*,†, Toshiya Mori**, and Takato Ono**

*Volcanic Fluid Research Center, School of Science, Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan

Corresponding author

**Geochemical Research Center, Graduate School of Science, The University of Tokyo, Tokyo, Japan

Received:
March 10, 2022
Accepted:
June 27, 2022
Published:
August 1, 2022
Keywords:
unmanned aerial vehicles (UAV), MultiGas, volcanic gas, time constant, sensor response
Abstract

Recent developments in unmanned aerial vehicle (UAV) technology have made it possible to measure gas compositions in volcanic plumes using lightweight compact gas sensors. However, the differences in the responses of each gas sensor can be critical in estimating gas compositions based on regression scatter plots, particularly for small plumes emitted during volcanic unrest and non-eruption periods. Based on the laboratory experiments, we show that air blowers easily adjust sensor responses and improve correlation on regression scatter plots, allowing quick composition estimates without the use of mathematical applications. Applying our measurement system, lightweight compact gas sensors for H2S, SO2, CO2, and H2O, with air blowers suspended from a UAV, were used to determine the compositions of a small plume at Io-yama, Kirishima volcano, Japan. The compositions of the plume estimated by our system were reasonably consistent with those obtained by laboratory analysis of volcanic gas collected at ground level near the vent, with fluctuations in CO2 ratios and lower H2O ratios, relative to other gases, being observed. For more accurate estimations of CO2 and H2O concentrations, low humidity conditions at a distance from the fumarole are preferable for analysis of plumes diluted by ambient dry air. Our measurement system is simple, easy to set up, and useful for estimating the compositions of small passive fumarolic gas plumes during volcanic unrest and non-eruption periods, without mathematical applications.

Cite this article as:
K. Matsu’ura, A. Terada, T. Mori, and T. Ono, “A Simple Method for the Analysis of Fumarolic Gases Using Response-Adjusted Sensors with a UAV,” J. Disaster Res., Vol.17, No.5, pp. 620-629, 2022.
Data files:
References
  1. [1] H. Shinohara, “A new technique to estimate volcanic gas composition: Plume measurements with a portable multi-sensor system,” J. Geophys. Res.: Solid Earth, Vol.143, pp. 319-333, doi: 10.1016/j.jvolgeores.2004.12.004, 2005.
  2. [2] A. Aiuppa, R. Moretti, C. Federico, G. Giudice, S. Gurrieri, M. Liuzzo, P. Papale, H. Shinohara, and M. Valenza, “Forecasting Etna eruptions by real-time observation of volcanic gas composition,” Geology, Vol.35, pp. 1115-1118, doi: 10.1130/G24149A.1, 2007.
  3. [3] T. Mori, T. Hashimoto, A. Terada, M. Yoshimoto, R. Kazahaya, H. Shinohara, and R. Tanaka, “Volcanic plume measurements using a UAV for the 2014 Mt. Ontake eruption,” Earth Planets Space, Vol.68, No.49, doi: 10.1186/s40623-016-0418-0, 2016.
  4. [4] J. Stix, J. M. de Moor, J. Rüdiger, A. Alan, E. Corrales, F. D’Arcy, J. A. Diaz, and M. Lotta, “Using drones and miniaturized instrumentation to study degassing at Turrialba and Masaya volcanoes, Central America,” J. Geophys. Res.: Solid Earth, Vol.123, No.8, pp. 6501-6520, doi: 10.1029/2018JB015655, 2018.
  5. [5] E. J. Liu, K. Wood, E. Mason, M. Edmonds, A. Aiuppa, G. Giudice, M. Bitetto, V. Francofonte, S. Burrow, T. Richardson, M. Watson, T. D. Pering, T. C. Wilkes, A. J. S. McGonigle, G. Velasquez, C. Melgarejo, and C. Bucarey, “Dynamics of outgassing and plume transport revealed by proximal unmanned aerial system (UAS) measurements at Volcán Villarrica, Chile,” Geochemistry, Geophysics, Geosystems, Vol.20, No.2, pp. 730-750, doi: 10.1029/2018GC007692, 2019.
  6. [6] E. J. Liu, A. Aiuppa, A. Alan, S. Arellano, M. Bitetto, N. Bobrowski, S. Carn, R. Clarke, E. Corrales, J. M. de Moor, J. A. Diaz, M. Edmonds, T. P. Fischer, J. Freer, G. M. Fricke, B. Galle, G. Gerdes, G. Giudice, A. Gutmann, C. Hayer, I. Itikarai, J. Jones, E. Mason, B. T. McCormick Kilbride, K. Mulina, S. Nowicki, K. Rahilly, T. Richardson, J. Rüdiger, C. I. Schipper, I. M. Watson, and K. Wood, “Aerial strategies advance volcanic gas measurements at inaccessible, strongly degassing volcanoes,” Sci. Adv., Vol.6, No.44, eabb9103, doi: 10.1126/sciadv.abb9103, 2020.
  7. [7] T. D. Pering, E. J. Liu, K. Wood, T. C. Wilkes, A. Aiuppa, G. Tamburello, M. Bitetto, T. Richardson, and A. J. S. McGonigle, “Combined ground and aerial measurements resolve vent-specific gas fluxes from a multi-vent volcano,” Nat. Commun., Vol.11, 3039, doi: 10.1038/s41467-020-16862-w, 2020.
  8. [8] T. M. Gerlach, H. Delgado, K. A. McGee, M. P. Doukas, J. J. Venegas, and L. Cárdenas, “Application of the LI-COR CO2 analyzer to volcanic plumes: A case study, volcán Popocatépetl, Mexico, June 7 and 10, 1995,” J. Geophys. Res.: Solid Earth, Vol.102, No.B4, pp. 8005-8019, doi: 10.1029/96JB03887, 1997.
  9. [9] H. Shinohara, “Composition of volcanic gases emitted during repeating Vulcanian eruption stage of Shinmoedake, Kirishima volcano, Japan,” Earth Planets Space, Vol.65, No.17, pp. 667-675, doi: 10.5047/eps.2012.11.001, 2013.
  10. [10] R. Kazahaya, H. Shinohara, T. Ohminato, and T. Kaneko, “Airborne measurements of volcanic gas composition during unrest at Kuchinoerabujima volcano, Japan,” Bull. Volcanol., Vol.81, No.7, doi: 10.1007/s00445-018-1262-9, 2019.
  11. [11] J. M. de Moor, J. Stix, G. Avard, C. Muller, E. Corrales, J. A. Diaz, A. Alan, J. Brenes, J. Pacheco, A. Aiuppa, and T. P. Fischer, “Insights on hydrothermal-magmatic interactions and eruptive processes at Poás Volcano (Costa Rica) from high-frequency gas monitoring and drone measurements,” Geophys. Res. Lett., Vol.46, No.3, pp. 1293-1302, doi: 10.1029/2018GL080301, 2016.
  12. [12] K. O. Dølven, J. Vierinen, R. Grilli, J. Triest, and B. Ferré, “Response time correction of slow response sensor data by deconvolution of the growth-law equation,” Geosci. Instrum. Method. Data Syst. Discuss. [preprint], doi: 10.5194/gi-2021-28, 2021 (in review).
  13. [13] T. J. Roberts, J. R. Saffell, C. Oppenheimer, and T. Lurton, “Electrochemical sensors applied to pollution monitoring: Measurement error and gas ratio bias – A volcano plume case study,” J. Volcanol. Geotherm. Res., Vol.281, No.15, pp. 85-96, doi: 10.1016/j.jvolgeores.2014.02.023, 2014.
  14. [14] T. J. Roberts, T. Lurton, G. Giudice, M. Liuzzo, A. Aiuppa, M. Coltelli, D. Vignelles, G. Salerno, B. Couté, M. Chartier, R. Baron, J. R. Saffell, and B. Scaillet, “Validation of a novel Multi-Gas sensor for volcanic HCl alongside H2S and SO2 at Mt. Etna,” Bull. Volcanol., Vol.79, No.36, doi: 10.1007/s00445-017-1114-z, 2017.
  15. [15] J. Rudiger, J. L. Tirpitz, J. M. de Moor, N. Bobrowski, A. Gutmann, M. Liuzzo, M. Ibarra, and T. Hoffmann, “Implementation of electrochemical, optical and denuder-based sensors and sampling techniques on UAV for volcanic gas measurements: examples from Masaya, Turrialba and Stromboli volcanoes,” Atmos. Meas. Tech., Vol.11, pp. 2441-2457, doi: 10.5194/amt-11-2441-2018, 2018.
  16. [16] F. Marturano, L. Martellucci, A. Chierici, A. Malizia, D. D. Giovanni, F. d’Errico, P. Gaudio, and J. F. Ciparisse, “Numerical fluid dynamics simulation for drones’ chemical detection,” Drones, Vol.5, No.3, 69, doi: 10.3390/drones5030069, 2021.
  17. [17] T. J. Roberts, C. F. Braban, C. Oppenheimer, R. S. Martin, R. A. Freshwater, D. H. Dawson, P. T. Griffiths, R. A. Cox, J. R. Saffell, and R. L. Jones, “Electrochemical sensing of volcanic gases,” Chemical Geology, Vol.332-333, pp. 74-91, doi: 10.1016/j.chemgeo.2012.08.027, 2012.
  18. [18] J. Burgués and S. Marco, “Environmental chemical sensing using small drones: A review,” Sci. Total Environ., Vol.748, 141172, doi: 10.1016/j.scitotenv.2020.141172, 2020.
  19. [19] S. Nakada, M. Nagai, T. Kaneko, Y. Suzuki, and F. Maeno, “The outline of the 2011 eruption at Shinmoe-dake (Kirishima), Japan,” Earth Planet Space, Vol.65, 1, doi: 10.5047/eps.2013.03.016, 2013.
  20. [20] O. Tetens, “Über einige meteorologische Begriffe,” Z. Geophys., Vol.6, pp. 297-309, 1930.
  21. [21] T. Ohba, M. Yaguchi, U. Tsunogai, M. Ito, and R. Shingubara, “Behavior of magmatic components in fumarolic gases related to the 2018 phreatic eruption at Ebinokogen Ioyama volcano, Kirishima Volcanic Group, Kyushu, Japan,” Earth Planets Space, Vol.73, 81, doi: 10.1186/s40623-021-01405-4, 2021.
  22. [22] L. M. Miloshevich, A. Paukkunen, H. Vömel, and S. J. Oltmans, “Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements,” J. Atmos. Ocean. Tech., Vol.21, No.9, pp. 1305-1327, doi: 10.1175/1520-0426(2004)021<1305_DAVOAT>2.0.CO;2, 2004.
  23. [23] S. W. Smith, “The Scientist and Engineer’s Guide to Digital Signal Processing,” California Technical Publishing, 1997.
  24. [24] A. Terada, M. Yaguchi, and T. Ohba, “Quantitative assessment of temporal changes in subaqueous hydrothermal activity in active crater lakes during unrest based on a time-series of lake water chemistry,” Front. Earth Sci., Vol.9, 740617, doi: 10.3389/feart.2021.740671, 2022.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Dec. 01, 2022