JDR Vol.17 No.4 pp. 552-560
doi: 10.20965/jdr.2022.p0552


Prediction of Reservoir Sedimentation in the Long Term Period Due to the Impact of Climate Change: A Case Study of Pleikrong Reservoir

Xuan Khanh Do*, Thu Hien Nguyen*,†, Le An Ngo*, Micah Lourdes Felix**, and Kwansue Jung**

*Faculty of Water Resources Engineering, Thuyloi University
175 Tay Son Street, Dong Da District, Hanoi, Vietnam

Corresponding author

**Chungnam National University, Daejeon, Korea

November 13, 2021
March 1, 2022
June 1, 2022
reservoir sedimentation, climate change, SWAT, bias corrected GCM/RCM model

Reservoirs are essential structures to provide reliable water supply, hydropower, and flood control. Climate change could be a significant factor that increases the sediment yield leading to rapid reduction of the reservoir’s storage capacity and design life. Previous studies of reservoir sedimentation-related impact of climate change often coupled a hydrological model with the raw outputs of general circulation model (GCM)/regional circulation model (RCM), which shows bias when comparing with observations data. This study aims to integrate the soil and water assessment tool (SWAT) model with 14 bias-corrected GCM/RCM models under two emissions scenarios, representative concentration pathway (RCP) 4.5 and 8.5, applied to Pleikrong reservoir to estimate its sedimentation in the long term period. The results show the reduction in reservoir storage capacity due to sedimentation ranges from 25% to 62% by 2050, depending on the defferent climate change models. The reservoir reduced storage volume’s rate in considering the impact of climate change is much faster than in the case of no climate change. The outcomes of this study will be helpful for a sustainable and climate-resilient plan of sediment management for the Pleikrong reservoir.

Cite this article as:
X. Do, T. Nguyen, L. Ngo, M. Felix, and K. Jung, “Prediction of Reservoir Sedimentation in the Long Term Period Due to the Impact of Climate Change: A Case Study of Pleikrong Reservoir,” J. Disaster Res., Vol.17 No.4, pp. 552-560, 2022.
Data files:
  1. [1] G. W. Annandale, G. L. Morris, and P. Karki, “Extending the Life of Reservoirs: Sustainable Sediment Management for Dam and Run-of-River Hydropower,” World Bank Group, 2016.
  2. [2] E. Elba, B. Urban, B. Ettmer, and D. Farghaly, “Mitigating the Impact of Climate Change by Reducing Evaporation Losses: Sediment Removal from the High Aswan Dam Reservoir,” American J. of Climate Change, Vol.6, No.2, pp. 230-247, doi: 10.4236/ajcc.2017.62012, 2017.
  3. [3] C. Onda, T. Sumi, and T. Asahi, “Planning and Analysis of Sedimentation Countermeasures in Hydropower Dams Considering Properties of Reservoir Sedimentation,” J. Disaster Res., Vol.13, No.4, pp. 702-708, doi: 10.20965/jdr.2018.p0702, 2018.
  4. [4] T. Esmaeili, T. Sumi, S. A. Kantoush, and Y. Kubota, “Free-Flow Sediment Flushing: Insights from Prototype-Scale Studies,” J. Disaster Res., Vol.13, No.4, pp. 677-690, doi: 10.20965/jdr.2018.p0677, 2018.
  5. [5] B. Shrestha, S. Maskey, M. S. Babel, A. van Griesven, and S. Uhlenbrook, “Sediment Related Impact of Climate Change and Reservoir Development in the Lower Mekong River Basin: A Case Study of the Nam Ou basin, Lao PDR,” Climate Change, Vol.149, No.1, pp. 13-27, doi: 10.1007/s10584-016-1874-z, 2018.
  6. [6] Y. Hu, S. Maskey, and S. Uhlenbrook, “Downscaling Daily Precipitation Over the Yellow River Source Region in China: A Comparison of Three Statistical Downscaling Methods,” Theoretical and Applied Climatology, Vol.112, No.3, pp. 447-460, doi: 10.1007/s00704-012-0745-4, 2012.
  7. [7] M. Masood and K. Takeuchi, “Climate Change Impact on the Manageability of Floods and Droughts of the Ganges-Brahmaputra-Meghna Basins Using Flood Duration Curves and Drought Duration Curves,” J. Disaster Res., Vol.10, No.5, pp. 991-1000, doi: 10.20965/jdr.2015.p0991, 2015.
  8. [8] O. T. Leta, A. I. El-Kadi, H. Dulai, and K. A. Ghazal, “Assessment of Climate Change Impacts on Water Balance Components of Heeia watershed in Hawaii,” J. of Hydrology: Regional Studies, Vol.8, pp. 182-197, doi: 10.1016/j.ejrh.2016.09.006, 2017.
  9. [9] N, Kumar, B. Tischbein, J. Kusche, P. Laux, M. K. Beg, and J. J. Bogardi, “Impact of Climate Change on Water Resources of Upper Kharun Catchment in Chhattisgarh, India,” J. of Hydrology: Regional Studies, Vol.13, pp. 189-207, doi: 10.1016/j.ejrh.2017.07.008, 2017.
  10. [10] Z. Li, W.-Z. Liu, X.-C. Zhang, and F.-L. Zheng, “Impacts of Land Use Change and Climate Variability on Hydrology in an Agricultural Catchment on the Loess Plateau of China,” J. of Hydrology, Vol.377, Nos.1-2, pp. 35-42, doi: 10.1016/j.jhydrol.2009.08.007, 2009.
  11. [11] H. Ma, D. Yang, S. K. Tan, B. Gao, and Q. Hu, “Impact of Climate Variability and Human Activity on Streamflow Decrease in the Miyun Reservoir Catchment,” J. of Hydrology, Vol.389, Nos.3-4, pp. 317-324, doi: 10.1016/j.jhydrol.2010.06.010, 2010.
  12. [12] L. M. Mango, A. M. Melesse, M. E. McClain, D. Gann, and S. G. Setegn, “Land Use and Climate Change Impacts on the Hydrology of the Upper Mara River Basin, Kenya: Results of a Modeling Study to Support Better Resource Management,” Hydrology and Earth System Sciences, Vol.15, No.7, pp. 2245-2258, doi: 10.5194/hess-15-2245-2011, 2011.
  13. [13] Y. Zhang, D. Guan, C. Jin, A. Wang, J. Wu, and F. Yuan, ”Analysis of Impacts of Climate Variability and Human Activity on Streamflow for a River Basin in Northeast China,” J. of Hydrology, Vol.410, Nos.3-4, pp. 239-247, doi: 10.1016/j.jhydrol.2011.09.023, 2011.
  14. [14] C.-N. Chen, S. S. Tfwala, and C.-H. Tsai, “Climate Change Impacts on Soil Erosion and Sediment Yield in a Watershed,” Water, Vol.12, No.8, Article No.2247, doi: 10.3390/w12082247, 2020.
  15. [15] P. J. Ward, R. T. van Balen, G. Vestraeten, H. Renssen, and J. Vandenberghe, “The Impact of Land Use and Climate Change on Late Holocene and Future Suspended Sediment Yield of the Meuse Catchment,” Geomorphology, Vol.103, No.3, pp. 389-400, doi: 10.1016/j.geomorph.2008.07.006, 2009.
  16. [16] S. T. Y. Tong, Y. Sun, T. Ranatunga, J. He, and Y. J. Yang, “Predicting Plausible Impacts of Sets of Climate and Land Use Change Scenarios on Water Resources,” Applied Geography, Vol.32, No.2, pp. 477-489, doi: 10.1016/j.apgeog.2011.06.014, 2012.
  17. [17] S. Zhang, Z. Li, X. Lin, and C. Zhang, “Assessment of Climate Change and Associated Vegetation Cover Change on Watershed-Scale Runoff and Sediment Yield,” Water, Vol.11, No.7, Article No.1373, doi: 10.3390/w11071373, 2019.
  18. [18] M. Azari, H. R. Moradi, B. Saghafian, and M. Faramarzi, “Climate Change Impacts on Streamflow and Sediment Yield in the North of Iran,” Hydrological Sciences J., Vol.61, No.1, pp. 123-133, doi: 10.1080/02626667.2014.967695, 2015.
  19. [19] D. N. Khoi and T. Suetsugi, “Impact of Climate and Land-Use Changes on Hydrological Processes and Sediment Yield – A Case Study of the Be River Catchment, Vietnam,” Hydrological Sciences J., Vol.59, No.5, pp. 1095-1108, doi: 10.1080/02626667.2013.819433, 2014.
  20. [20] M. Enayati, O. Bozorg-Haddad, J. Bazrafshan, S. Hejabi, and X. Chu, “Bias Correction Capabilities of Quantile Mapping Methods for Rainfall and Temperature Variables,” J. of Water and Climate Change, Vol.12, No.2, pp. 401-419, doi: 10.2166/wcc.2020.261, 2021.
  21. [21] J. Chen, F. P. Brissette, D. Chaumont, and M. Braun, “Finding Appropriate Bias Correction Methods in Downscaling Precipitation for Hydrologic Impact Studies over North America,” Water Resource Research, Vol.49, No.7, pp. 4187-4205, doi: 10.1002/wrcr.20331, 2013.
  22. [22] A. J. Cannon, S. R. Sobie, and T. Q. Murdock, “Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes?,” J. of Climate, Vol.28, No.17, pp. 6938-6959, doi: 10.1175/JCLI-D-14-00754.1, 2015.
  23. [23] J. Teng, N. J. Potter, F. H. S. Chiew, L. Zhang, B. Wang, J. Vaze, and J. P. Evans, “How Does Bias Correction of Regional Climate Model Precipitation Affect Modelled Runoff?,” Hydrology and Earth System Science, Vol.19, No.2, pp. 711-728, doi: 10.5194/hess-19-711-2015, 2015.
  24. [24] K. Matsushima, M. Hyodo, N. Shibata, and Y. Shimizu, “Effectiveness of Flexible Dam Operation and Sediment Replenishment at Managawa Dam, Japan,” J. Disaster Res., Vol.13, No.4, pp. 691-701, doi: 10.20965/jdr.2018.p0691, 2018.
  25. [25] S. Kobayashi, T. Koshiba, and T. Sumi, “Current and Future Study Topics on Reservoir Sediment Management by Bypass Tunnels,” J. Disaster Res., Vol.13, No.4, pp. 668-676, doi: 10.20965/jdr.2018.p0668, 2018.
  26. [26] J. G. Arnold, R. Srinivasan, R. S. Muttiah, and J. R. Williams, “Large Area Hydrologic Modeling and Assessment Part I: Model Development,” J. of the American Water Resources Association, Vol.34, No.1, pp. 73-89, doi: 10.1111/j.1752-1688.1998.tb05961.x, 1998.
  27. [27] D. C. Flanagan, J. E. Gilley, and T. G. Franti, “Water Erosion Prediction Project (WEPP): Development History, Model Capabilities, and Future Enhancements,” Trans. of the ASABE, Vol.50, No.5, pp. 1603-1612, doi: 10.13031/2013.23968, 2007.
  28. [28] W. H. Green and G. A. Ampt, “Studies in Soil Physics, Part 1, The Flow of Air and Water Through Soils,” The J. of Agricultural Sciences, Vol.4, pp. 1-24, 1911.
  29. [29] K. C. Abbaspour, C. A. Johnson, and M. T. van Genuchten, “Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure,” Vadouse Zone J., Vol.3, No.4, pp. 1340-1352, doi: 10.2136/vzj2004.1340, 2004.
  30. [30] K. C. Abbaspour, J. Yang, I. Maximov, R. Siber, K. Bogner, J. Mieleitner, J. Zobrist, and R. Srinivasan, “Modelling Hydrology and Water Quality in the Pre-Alpine/Alpine Thur Watershed Using SWAT,” J. of Hydrology, Vol.333, Nos.2-4, pp. 413-430, doi: 10.1016/j.jhydrol.2006.09.014, 2007.
  31. [31] C. Santhi, J. G. Arnold, J. R. Williams, W. A. Dugas, R. Srinivasan, and L. M. Hauck, “Validation of the SWAT Model on a Large River Basin with Point and Nonpoint Sources,” J. of the American Water Resources Association, Vol.37, No.5, pp. 1169-1188, doi: 10.1111/j.1752-1688.2001.tb03630.xL, 2011.
  32. [32] J. Benaman, C. A. Shoemaker, and D. A. Haith. “Calibration and Validation of Soil and Water Assessment Tool on an Agricultural Watershed in Upstate New York,” J. of Hydrologic Engineering, Vol.10, No.5, pp. 363-374, doi: 10.1061/(ASCE)1084-0699(2005)10:5(363), 2005.
  33. [33] D. N. Moriasi, J. G. Arnold, M. W. van Liew, R. L. Binger, R. D. Harmel, and T. L. Veith, “Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations,” Trans. of the ASABE, Vol.50, No.3, pp. 885-900, doi: 10.13031/2013.23153, 2007.
  34. [34] J. H. Christensen, F. Boberg, O. B. Christensen, and P. Lucas-Picher, “On the Need for Bias Correction of Regional Climate Change Projections of Temperature and Precipitation,” Geophysical Research Letters, Vol.35, No.20, Article No.L20709, doi: 10.1029/2008GL035694, 2008.
  35. [35] D. Maraun, “Bias Correction, Quantile Mapping, and Downscaling: Revisiting the Inflation Issue,” J. of Climate, Vol.26, No.6, pp. 2137-2143, doi: 10.1175/JCLI-D-12-00821.1, 2013.
  36. [36] J. Boe, L. Terray, F. Habets, and E. Martin, “Statistical and Dynamical Downscaling of the Seine Basin Climate for Hydro-Meteorological Studies,” Int. J. of Climatology, Vol.27, No.12, pp. 1643-1655, doi: 10.1002/joc.1602, 2007.
  37. [37] C. Piani, G. P. Weedon, M. Best, S. M. Gomes, P. Viterbo, S. Hagemann, and J. O. Haerter, “Statistical Bias Correction of Global Simulated Daily Precipitation and Temperature for the Application of Hydrological Models,” J. of Hydrology, Vol.395, Nos.3-4, pp. 199-215, doi: 10.1016/j.jhydrol.2010.10.024, 2010.
  38. [38] M. J. Themeßl, A. Gobiet, and A. Leuprecht, “Empirical-Statistical Downscaling and Error Correction of Daily Precipitation from Regional Climate Models,” Int. J. of Climatology, Vol.31, No.10, pp. 1530-1544, doi: 10.1002/joc.2168, 2011.
  39. [39] J. M. Lara and E. L. Pemberton, “Initial Unit Weight of Deposited Sediments,” Proc. of the Federal Inter-Agency Sedimentation Conf. 1963, pp. 818-845, 1965.
  40. [40], Kontum PCP, 2011 (in Vietnamese) [accessed July 24, 2020]

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on May. 10, 2024