JDR Vol.17 No.1 pp. 65-72
doi: 10.20965/jdr.2022.p0065


COVID-19 and Spanish Flu, the Representative Pandemics of the 21st and 20th Centuries

Sumio Shinoda

Collaborative Research Center for Infectious Diseases in India, Okayama University
Tsushima-naka, Okayama, Okayama 700-8530, Japan

Corresponding author

October 19, 2021
December 21, 2021
January 30, 2022
COVID-19, SARS-CoV-2, vaccine, Spanish flu, influenza

We are still in the early stage of 21st century and the two pandemics Spanish flu and COVID-19 are the presentative pandemics in 20th and 21st centuries, respectively. The Spanish flu pandemic raged from 1918 to 1920, just after World War I. It was the first influenza pandemic worldwide; since then, humankind has experienced many such pandemics. Spanish flu is caused by a virus. However, since virology was not well established at that time, the new clinical system was needed to cope with “unknown pathogen”; during the pandemic, high infection rates were recorded, but our predecessors managed to somehow tackle the situation. With respect to the ongoing COVID-19 pandemic, both the virus and its genome were clarified quickly. Nonetheless, it has turned out to be quite an intriguing infectious disease, with the high rates in developed countries, such as the US and those in Europe, which have aging societies, and low rates in developing countries such as those in Africa, where the population is largely young. Here, I compared and discuss the two pandemics, COVID-19 and Spanish flu.

Cite this article as:
S. Shinoda, “COVID-19 and Spanish Flu, the Representative Pandemics of the 21st and 20th Centuries,” J. Disaster Res., Vol.17 No.1, pp. 65-72, 2022.
Data files:
  1. [1] D. Huremovic, “Brief History of Pandemics (Pandemics Throughout History),” D. Huremovic (Ed.), “Psychiatry of Pandemics,” pp. 7-35, Springer Nature, 2019.
  2. [2] L. Ansari, G. Grier, and M. Byers, “Deliberate release: Plague – A review,” Biosaf. Biosec., Vol.2, No.1, pp. 10-22, 2020.
  3. [3] B. Bramanti, K. R. Dean, L. Walloc, and N. C. Strenseth, “The Third Plague Pandemic in Europe,” Proc. R. Soc. B., Vol.286, No.1901, doi: 10.1098/rspb.20182429, 2018.
  4. [4] R. J. Garten, C. T. Davis, C. A. Davis, B. Shu, S. Lindsrom, A. Balish, W. M. Sessions, X. Xu, E. Skepper, V. Deyde et al., “Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans,” Science, Vol.325, No.5937, pp. 197-201, 2009.
  5. [5] S. Broor, A. Krishnan, D. S. Roy, S. Dhakad, S. Kaushik, M. A. Mir, Y. Singh, A. Moen, M. Chadha, A. C. Mishra, and R. B. Lai, “Dynamic patterns of circulating seasonal and pandemic A(H1N1) pdm09 influenza viruses from 2007-2010 in and around Delhi, India,” Plos One, Vol.7, Vol.1, c29129, doi: 10.1371/journal.pone.0029129, 2012.
  6. [6] A. Trampuz, R. M. Prabhu, T. F. Smith, and L. M. Baddour, “Avian influenza: a new pandemic threat?,” Mayo Clin. Proc., Vol.79, No.4, pp. 523-530, 2004.
  7. [7] S. Shinoda, “Epidemiology of the Novel Coronavirus Disease 2019 (COVID-19) and Several Remarkable Pandemics,” J. Disaster Res., Vol.16, No.1, pp. 97-109, 2021.
  8. [8] L. H. Haralambieva, R. B. Kenedy, I. G. Ovsyyannikova, J. A. Whitaker, and G. A. Poland, “Variability in humoral immunity to measles vaccine: new development,” Trends Mol. Med., Vol.21, pp. 789-801, 2015.
  9. [9] D. E. Griffin, W.-H. Lin, and C.-H. Pan, “Measles virus, immune control and persistence,” FEMS Microbiol. Rev., Vol.36, No.3, pp. 649-662, 2012.
  10. [10] M. Wheelis, “Warfare at the 1346 Siege of Caffa,” Emerge. Infect. Dis., Vol.8, No.9, pp. 971-975, 2002.
  11. [11] H. Meyer, R. Ehmann, and G. L. Smith, “Smallpox in the Post-Eradication Era,” Viruses, Vol.12, No.2, Article No.138, doi: 10.3390/v120138, 2020.
  12. [12] C. Huang, Y. Wan, X. Li, L. Ren, J. Zha, and Y. Hu, “Clinical futures of patients infected with 2019 novel coronavirus, Wuhan, China,” Lancet, doi: 10.1016/s0140-6736(20)30183-5, 2020.
  13. [13] X. Xu, P. Che, J. Wan, J. Fen, H. Zho, X. Li, W. Zhon, and P. Hao, “Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission,” Sci. China Life Sc., Vol.6, No.3, pp. 457-460, 2020.
  14. [14] D. S. Hui, E. I. Azhar, T. A. Madan, F. Nioum, R. Koc, O. Dar, G. Ippolit, T. D. Mchug, Z. A. Memis, C. Drosten, A. Zumla, and E. Peterse, “The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health – The latest 2019 novel coronavirus outbreak in Wuhan China,” Int. J. Infec. Dis., Vol.9., pp. 264-266, doi: 10/j.ijid.2020.01.00, 2020.
  15. [15] C. Drosten, S. Gunther, W. Preiser, S. van der Werf, H. R. Brodt, S. Becker, H. Rabenau, M. Panning, L. Kolesnikova, R. A. Fouchier, A. Berger, A. M. Burguiere, J. Cinatl, M. Eickmann, N. Escriou, K. Grywna, S. Kramme, J. C. Manuguerra, S. Muller, V. Rickerts, M. Sturmer, S. Vieth, H. D. Klenk, A. D. Osterhaus, H. Schmidt, and H. W. Doerr, “Identification of a novel coronavirus in patients with severe acute respiratory syndrome,” N. Engl. J. Med., Vol.348, pp. 1967-1976, 2003.
  16. [16] T. G. Ksiazek, D. Erdman, C. S. Goldsmith, S. R. Zaki, T. Peret, S. Emery, S. Tong, C. Urbani, J. A. Comer, W. Lim, P. E. Rollin, S. F. Dowell, A. E. Ling, C. D. Humphrey, W. J. Shieh, J. Guarner, C. D. Paddock, P. Rota, B. Fields, J. DeRisi, J. Y. Yang, N. Cox, J. M. Hughes, J. W. LeDuc, W. J. Bellini, L. J. Anderson, and S. W. Group, “A novel coronavirus associated with severe acute respiratory syndrome,” N. Engl. J. Med., Vol.348, pp. 1953-1966, 2003.
  17. [17] K. W. Tsang, P. L. Ho, G. C. Ooi, W. K. Yee, T. Wang et al., “A cluster of cases of severe acute respiratory syndrome in Hong Kong,” N. Engl. J. Med., Vol.348, pp. 1977-1985, 2003.
  18. [18] A. M. Zaki, S. van Boheemen, T. M. Bestebroer, A. D. Osterhaus, and R. A. Fouchier, “Isolation of a novel coronavirus from a man with pneumonia Saudi Arabia,” N. Engl. J. Med., Vol.367, pp. 1814-1820, 2012.
  19. [19] J. F. Trape, G. Pison, A. Spiegel, C. Enel, and C. Rogier, “Combating malaria in Africa,” Trends Parasitol, Vol.18, No.5, pp. 224-230, 2002.
  20. [20] WHO, [accessed September 10, 2021]
  21. [21] M. Maurin, F. Fenollar, O. M. Eatoniannkov, B. Davoust, C. Devaux, and D. Raoult, “Current Status of Putative Animal Sources of Sources of SARS-CoV-2 Infection in Humans: Wildlife, Domestic Animals and Pets,” Microorganisms, Vol.9, 868, doi: 10.3390/microorgnisms9040868, 2021.
  22. [22] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu, W. Wang, H. Song, B. Huang, N. Zhu, Y. Bi, X. Ma, F. Zhan, L. Wang et al., “Genomic characterization and epidemiology of 2019 novel corona virus: implications for virus origins and receptor binding,” Lancet, Vol.395, pp. 565-574, 2020.
  23. [23] P. Zhou, X. L. Yang, W. G. Wang, B. Hu, L. Zhang, W. Zhang, H. R. Si, Y. Zhu, B. Li, C. L. Huang et al., “A pneumonia outbreak associated with a new coronavirus of probable bat origin,” Nature, Vol.579, pp. 270-273, 2020.
  24. [24] D. Cavanagh, “Coronavirus avian infectious bronchitis virus,” Vet. Res., Vol.38, pp. 281-297, 2007.
  25. [25] D. Cavanagh, K. Mawditt, M. Sharma, S. E. Drury, H. L. Ainsworth, P. Britto, and R. E. Gough, “Detection of a coronavirus from turkey poults in Europe genetically related to infectious bronchitis virus of chickens,” Avian Pathol., Vol.30, pp. 355-368, 2001.
  26. [26] A. M. Zaki, S. van Boheemen, T. M. Bestebroer, A. D. Osterhaus, and R. A. Fouchier, “Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia,” N. Engl. J. Med., Vol.367, pp. 1814-1820, 2012.
  27. [27] G. Dudas, L. M. Carvalho, A. Rambaut, and T. Bedford, “MERS-Co-V spillover at the camel-human interface,” eLife, Vol.7, e31257, doi: 10.7554/eLife.31257, 2018.
  28. [28] J. F. Chan, K. K. To, H. Tse, D.-Y. Jin, and K.-Y. Yuen, “Interspecies transmission and emergence of novel viruses: lessons from bats and birds,” Trends Microbiol., Vol.21, No.10, pp. 544-555, 2013.
  29. [29] W. Li, Z. Shi, M. Yu, W. Ren, C. Smith, J. H. Epstein, H. Wang, G. Crameri, Z. Zhihong, and L. F. Wang, “Bats are Natural Reservoirs of SARS-like Coronaviruses,” Science, Vol.310, No.5748, pp. 676-679, 2005.
  30. [30] T. Prince, S. L. Smith, A. D. Radford, T. Solomon, G. L. Hughes, and E. I. Patterson, “SARS-CoV-2 Infections in Animals: Reservoirs for Reverse Zoonosis and Models for Study,” Viruses, Vol.13, 494, doi: 10.3390/v13030494, 2021.
  31. [31] T. Ahmad, M. Khan, T. H. Musa, S. Nasir, J. Hui, D. K. B. Aldana, and A. J. R. Morales, “COVID-19: Zoonotic aspects,” Travel Med. Infect. Dis., doi: 10.1016/j.maid.2020.101607, 2020.
  32. [32] Y. Zhang, J. Wen, X. Lin, and G. Li, “Exploration of hosts and transmission traits for SARS-CoV-2 based on the k-mer natural vector,” Infect. Genetic. Evol., doi: 10.1016/j.meegid.2021.104933, 2021.
  33. [33] L. F. Wang and B. T. Eaton, “Bats, civets and the emergence of SARS,” Curr. Top. Micromiol. Immunol., Vol.315, pp. 325-344, 2007.
  34. [34] N. Jhonson and J. Mueller, “Updating the accounts: Global mortality of the 1918-1920 ‘Spanish’ Influenza pandemic,” Bulletin Hist. Med., Vol.76, pp. 105-115, 2002.
  35. [35] A. Gagnon, M. S. Miller, S. A. Hallman, R. Bourbeau, D. A. Herring, D. J. D. Earn, and J. Madrenas, “Age-Specific Mortality During the 1918 Influenza Pandemic: Unravelling the Mystery of High Young Adult Mortality,” PLOS ONE, Vol.8, e69586, 2013.
  36. [36] J. D. Taubenberger, “The Origin and Virulence of the 1918 ‘Spanish’ Influenza Virus,” Proc. Am. Philos. Soc., Vol.150, pp. 86-112, 2006.
  37. [37] J. K. Taubenberger and D. M. Morens, “1918 Influenza: the Mother of All Pandemics,” Emerg. Infect. Dis., Vol.12, No.1, pp. 15-22, 2006.
  38. [38] L. Cilek, G. Chowel, and D. R. Fairnas, “Age-Specific Excess Mortality Pattern During the 1918-1920 Influenza Pandemic in Madrid, Spain,” Am. J. Epidemiol., Vol.187, No.12, pp. 2511-2523, 2018.
  39. [39] A. Erkoreka, “The Spanish influenza pandemic in occidental Europe (1918-1919) and victim age,” Influenza Other Respiratory Viruses, Vol.4, pp. 81-89, 2010.
  40. [40] G. W. Rice and E. Palmer, “Pandemic Influenza in Japan, 1918-19: Mortality Patterns and Official Responses,” J. Jpn. Studies, Vol.19, pp. 389-420, 1993.
  41. [41] W. Smith, C. H. Andrewes, and P. P. Laidlaw, “A virus obtained from influenza patients,” Lancet, Vol.222, pp. 66-68, 1993.
  42. [42] J. K. Taubenbarge, A. H. Rei, R. M. Lourens, R. Wan, G. Jin, and T. G. Fanning, “Characterization of the 1918 influenza virus polymerase gene,” Nature, Vol.437, pp. 889-893, 2005.
  43. [43] K. Kariko, H. P. Ni, J. Capodici, M. Lamphier, and D. Weismann, “mRNA is an endogenous ligand for toll-like receptor 3,” J. Biol. Chem., Vol.279, pp. 12542-12550, 2004.
  44. [44] R. Verbeke, I. Lentacker, S. C. De Smedt, and H. Dewitte, “The dawn of mRNA vaccines: The COVID-19 case,” J. Contr. Rel., Vol.333, pp. 511-520, 2021.
  45. [45] X. Hou, T. Zaks, R. Langer, and Y. Dong, “Lipid nanoparticles for mRNA delivery,” Nature Re., doi: 10.1038/S41578-021-00358-0, 2021.
  46. [46] J. A. Al-Tawfiq, A. H. Al-Houmoud, and Z. A. Memish, “Remdesivir as a possible therapoitic option for the COVID-19,” Travel Med. Infect. Dis., doi: 10.1016/j.tmaid.2020.101615, 2020.
  47. [47] D. Wrapp, N. Wang, K. Korbett, J. A. Goldsmith, C. Hsieh, O. Abiona, B. S. Grahim, and J. S. McLellan, “Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation,” Science, Vol.367, pp. 1260-1263, 2020.
  48. [48] A. Baum, B. O. Fulton, E. Wloga, R. Copin, K. E. Pascal, V. Russo, S. Giodano, K. Lanzo, N. Negron, M. N. Y. Wei et al., “Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies,” Science, doi: 10.1126/science.abd0831, 2020.
  49. [49] M. Hussain, N. Jabeen, F. Raza, S. Shabbir, A. A. Baig, A. Amanullah, and B. Aziz, “Structural variations inhuman ACEs may influence its binding with SARS-CoV-2 spike protein,” J. Med. Virol., Vol.92, No.9, pp. 1580-1586, 2020.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jun. 18, 2024