single-dr.php

JDR Vol.15 No.2 pp. 203-211
(2020)
doi: 10.20965/jdr.2020.p0203

Paper:

Development of Automatic Analysis and Data Visualization System for Volcano Muography

Hiroyuki K. M. Tanaka

The University of Tokyo
1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan

Corresponding author

Received:
December 19, 2018
Accepted:
January 20, 2020
Published:
March 20, 2020
Keywords:
muography, muon, volcano, data visualization
Abstract

Technological developments in muography have evolved since the first volcano was imaged with muography in 2007. In order to improve the muography technique as a more useful aid to volcano studies, there is a need for the time required to show the resultant images to be shortened. To expedite this process, an automatic real-time visualization system was developed and tested. In conjunction with future scaled-up detectors that will collect muons faster, this visualization system can also offer more practical and efficient tools for volcano muography.

Cite this article as:
H. Tanaka, “Development of Automatic Analysis and Data Visualization System for Volcano Muography,” J. Disaster Res., Vol.15 No.2, pp. 203-211, 2020.
Data files:
References
  1. [1] H. K. M. Tanaka, T. Nakano, S. Takahashi, J. Yoshida, M. Takeo, J. Oikawa, T. Ohminato, Y. Aoki, E. Koyama, H. Tsuji, and K. Niwa, “High resolution imaging in the inhomogeneous crust with cosmic-ray muon radiography: The density structure below the volcanic crater floor of Mt. Asama, Japan,” Earth Planet. Sci. Lett., Vol.263, No.1-2, pp. 104-113, 2007.
  2. [2] H. K. M. Tanaka, T. Nakano, S. Takahashi, J. Yoshida, H. Ohshima, T. Maekawa, H. Watanabe, and K. Niwa, “Imaging the conduit size of the dome with cosmic – ray muons: The structure beneath Showa – Shinzan Lava Dome, Japan,” Geophys. Res. Lett., Vol.34, Issue 22, doi: 10.1029/2007GL031389, 2007.
  3. [3] H. K. M. Tanaka, T. Uchida, M. Tanaka, H. Shinohara, and H. Taira, “Cosmic-ray muon imaging of magma in a conduit: Degassing process of Satsuma-Iwojima Volcano, Japan,” Geophys. Res. Lett., Vol.36, Issue 1, doi: 10.1029/2008GL036451, 2009.
  4. [4] H. K. M. Tanaka, H. Taira, T. Uchida, M. Tanaka, M. Takeo, T. Ohminato, Y. Aoki, R. Nishiyama, D. Shoji, and H. Tsuiji, “Three-dimensional computational axial tomography scan of a volcano with cosmic ray muon radiography,” J. Geophys. Res. Solid Earth, Vol.115, No.B12, doi: 10.1029/2010JB007677, 2010.
  5. [5] T. Kusagaya and H. K. M. Tanaka, “Development of the very long-range cosmic-ray muon radiographic imaging technique to explore the internal structure of an erupting volcano, Shinmoe-dake, Japan,” Geosci. Instrum. Method. Data Syst., Vol.4, Issue 2, pp. 215-226, 2015.
  6. [6] T. Kusagaya and H. K. M. Tanaka, “Muographic imaging with a multi-layered telescope and its application to the study of the subsurface structure of a volcano,” Proc. Jpn. Acad. Ser. B, Vol.91, pp. 501-510, 2015.
  7. [7] H. K. M. Tanaka, “Instant snapshot of the internal structure of Unzen lava dome, Japan with airborne muography,” Sci. Rep., Vol.6, Article No.39741, 2016.
  8. [8] L. Oláh, H. K. M. Tanaka, T. Ohminato, and D. Varga, “High-definition and low-noise muography of the Sakurajima volcano with gaseous tracking detectors,” Sci. Rep., Vol.8, Article No.3207, 2018.
  9. [9] D. Carbone, D. Gibert, J. Marteau, M. Diament, L. Zuccarello, and E. Galichet, “An experiment of muon radiography at Mt Etna (Italy),” Geophys. J. Int., Vol.196, No.2, pp. 633-643, doi: 10.1093/gji/ggt403, 2014.
  10. [10] G. Saracino et al., “The MURAVES muon telescope: technology and expected performances,” Ann Geophys., Vol.60, No.1, doi: 10.4401/ag-7378, 2017.
  11. [11] V. Tioukov et al. “Muography with nuclear emulsions – Stromboli and other projects,” Ann Geophys., Vol.60, No.1, doi: 10.4401/ag-7386, 2017.
  12. [12] N. Lesparre, D. Gibert, J. Marteau, J-C. Komorowski, F. Nicollin, and O. Coutant, “Density muon radiography of La Soufrière of Guadeloupe volcano: comparison with geological, electrical resistivity and gravity data,” Geophys. J. Int., Vol.190, No.2, pp. 1008-1019, doi: 10.1111/j.1365-246X.2012.05546.x, 2012.
  13. [13] P. Noli et al., “Muography of the Puy de Dôme,” Ann Geophys., Vol.60, No.1, doi: 10.4401/ag-7380, 2017.
  14. [14] D. Lo Presti, G. Gallo, D. L. Bonanno, G. Bonanno, D. G. Bongiovanni, D. Carbone, C. Ferlito, J. Immè, P. La Rocca, F. Longhitano, A. Messina, S. Reito, F. Riggi, G. Russo, and L. Zuccarello, “The MEV project: Design and testing of a new high-resolution telescope for muography of Etna Volcano,” Nucl. Instrum. Meth., A, Vol.904, pp. 195-201, 2018.
  15. [15] H. K. M. Tanaka, T. Kusagaya, and H. Shinohara, “Radiographic visualization of magma dynamics in an erupting volcano,” Nat. Commun., Vol.5, Article No.3381, 2014.
  16. [16] H. K. M. Tanaka, T. Uchida, M. Tanaka, M. Takeo, J. Oikawa, T. Ohminato, Y. Aoki, E. Koyama, and H. Tsuji, “Detecting a mass change inside a volcano by cosmic-ray muon radiography (muography): First results from measurements at Asama volcano, Japan,” Geophys. Res. Lett., Vol.36, No.17, doi: 10.1029/2009GL039448, 2009.
  17. [17] L. W. Alvarez et al., “Search for hidden chambers in the pyramid,” Science, Vol.167, Issue 3919, pp. 832-739, 1970.
  18. [18] K. Morishima, M. Kuno, A. Nishio, N. Kitagawa, Y. Manabe, M. Moto, F. Takasaki, H. Fujii, K. Satoh, H. Kodama, K. Hayashi, S. Odaka, S. Procureur, D. Attié, S. Bouteille, D. Calvet, C. Filosa, P. Magnier, I. Mandjavidze, M. Riallot, B. Marini, P. Gable, Y. Date, M. Sugiura, Y. Elshayeb, T. Elnady, M. Ezzy, E. Guerriero, V. Steiger, N. Serikoff, J.-B. Mouret, B. Charlès, H. Helal, and M. Tayoubi, “Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons,” Nature, Vol.552, No.7685, pp. 386-390, 2017.
  19. [19] G. Saracino, L. Amato, F. Ambrosino, G. Antonucci, L. Bonechi, L. Cimmino, L. Consiglio, R. Alessandro, E. De Luzio, G. Minin, P. Noli, L. Scognamiglio, P. Strolin, A. Varriale, “Imaging of underground cavities with cosmic-ray muons from observations at Mt. Echia (Naples),” Sci. Rep., Vol.7, Article No.1181, 2017.
  20. [20] E. P. George, “Cosmic rays measure overburden of tunnel,” Commonw. Eng., Vol.1955, pp. 455-457, 1955.
  21. [21] L. Oláh, G. G. Barnaföldi, G. Hamar, H. G. Melegh, P. Pazmandi, G. Surányi, and D. Varga, “High energy physics innovations for earth sciences from Hungary,” H. Miyamoto, H. Tanaka, and T. Niihara (Eds.), “Muography: Perspective Drawing in the 21st Century,” pp. 77-85, The University Museum, The University of Tokyo, 2015.
  22. [22] K. Morishima, “Muographic investigation in Fukushima nuclear power plant,” H. Miyamoto, H. Tanaka, and T. Niihara (Eds.), “Muography: Perspective Drawing in the 21st Century,” pp. 87-89, The University Museum, The University of Tokyo, 2015.
  23. [23] H. K. M. Tanaka, “Development of stroboscopic muography,” Geosci. Instrum. Method. Data Syst., Vol.2, pp. 41-45, 2013.
  24. [24] L. Oláh, H. K. M. Tanaka, T. Ohminato, and D. Varga, “High-definition and low-noise muography of the Sakurajima volcano with gaseous tracking detectors,” Sci. Rep., Vol.8, Article No.3207, 2018.
  25. [25] H. K. M. Tanaka and I. Yokoyama, “Possible application of compact electronics for multilayer muon high-speed radiography to volcanic cones,” Geosci. Instrum. Method. Data Syst., Vol.2, pp. 263-273, 2013.
  26. [26] C. Patrignani et al., “Review of particle physics,” Chin. Phys. C, Vol.40, No.10, Article No.100001, 2016.
  27. [27] D. E. Groom, N. V. Mokhov, and S. I. Striganov, “Muon stopping power and range tables 10 MeV–100 TeV,” Atomic Data and Nuclear Data Tables, Vol.78, No.2, pp. 183-356, 2002.
  28. [28] Japan Meteorological Agency, “Report on the eruption at Sakurajima volcano,” https://www.data.jma.go.jp/svd/vois/data/tokyo/STOCK/volinfo/volinfo.php?info=VG&id=506 [accessed November 2, 2018]
  29. [29] L. Oláh, H. K. M. Tanaka, T. Ohminato, G. Hamar, and D. Varga, “Plug Formation Imaged Beneath the Active Craters of Sakurajima Volcano With Muography,” Geophys. Res. Lett., Vol.46, Issue 17-18, pp. 10417-10424, 2019.
  30. [30] Geospherical Information Authority of Japan, “Digital elevation map,” https://fgd.gsi.go.jp/download/menu.php [accessed October 5, 2018]

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Nov. 04, 2024