JDR Vol.15 No.2 pp. 96-105
doi: 10.20965/jdr.2020.p0096


The Advancement of Research on Inland Earthquake Generation 2014–2018

Satoshi Matsumoto*1,†, Tomomi Okada*2, Toshiko Terakawa*3, Makoto Uyeshima*4, and Yoshihisa Iio*5

*1Institute of Seismology and Volcanology, Faculty of Science, Kyushu University
2-5643-29 Shinyama, Shimabara, Nagasaki 855-0843, Japan

Corresponding author

*2Graduate School of Science, Tohoku University, Miyagi, Japan

*3Graduate School of Environmental Studies, Nagoya University, Aichi, Japan

*4Earthquake Research Institute, The University of Tokyo, Tokyo, Japan

*5Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan

January 6, 2020
January 14, 2020
March 20, 2020
inland earthquake, seismogenic field, crustal response, earthquake and volcano hazard reduction research

The 2011 Tohoku-Oki Earthquake (M9.0) significantly affected inland areas of Japan. The crust and mantle response to the magathrust earthquake induced changes in the mechanical conditions of the seismogenic zone. Here we present important progress in the research into the seismogenesis of inland earthquakes. Stress, strain, strength, and structures are key parameters affecting the occurrence of earthquakes. In particular, both the spatial and temporal changes in these parameters around the focal areas of the large inland earthquakes have been detected and modeled. These results have provided spatial potential evaluation in terms of future inland earthquake occurrence. However, we clearly recognize that, in order to understand and predict the inland earthquake generation process, it will inevitably be necessary to unify the research on various spatial and temporal scales, from problems related to long-term stress loading from plate-relative motion to instant fault response.

Cite this article as:
S. Matsumoto, T. Okada, T. Terakawa, M. Uyeshima, and Y. Iio, “The Advancement of Research on Inland Earthquake Generation 2014–2018,” J. Disaster Res., Vol.15 No.2, pp. 96-105, 2020.
Data files:
  1. [1] T. Okada, T. Matsuzawa, N. Umino, K. Yoshida, A. Hasegawa, H. Takahashi, T. Yamada, M. Kosuga, T. Takeda, A. Kato, T. Igarashi, K. Obara, S. Sakai, A. Saiga, T. Iidaka, T. Iwasaki, N. Hirata, N. Tsumura, Y. Yamanaka, T. Terakawa, H. Nakamichi, T. Okuda, S. Horikawa, H. Katao, T. Miura, A. Kubo, T. Matsushima, K. Goto, and H. Miyamachi, “Hypocenter migration and crustal seismic velocity distribution observed for the inland earthquake swarms induced by the 2011 Tohoku-Oki earthquake in NE Japan: implications for crustal fluid distribution and crustal permeability,” Geofluids, Vol.15, No.1-2, pp. 293-309, doi: 10.1111/gfl.12112, 2015.
  2. [2] K. Yoshida, A. Hasegawa, T. Yoshida, and T. Matsuzawa, “Heterogeneities in Stress and Strength in Tohoku and Its Relationship with Earthquake Sequences Triggered by the 2011 M9 Tohoku-Oki Earthquake,” Pure Appl. Geophys., Vol.176, pp. 1335-1355, doi: 10.1007/s00024-018-2073-9, 2019.
  3. [3] T. Terakawa, C. Hashimoto, and M. Matsu’ura, “Changes in seismic activity following the 2011 Tohoku-oki earthquake: Effects of pore fluid pressure,” Earth Planet. Sci. Lett., Vol.365, pp. 17-24, doi: 10.1016/j.epsl.2013.01.017, 2013.
  4. [4] M. Suzuki, “S-wave reflectors beneath the earthquake swarm in the Yonezawa-Kitakata area, NE Japan,” Master Thesis, Tohoku University, 2018 (in Japanese).
  5. [5] T. Okada, T. Nakayama, S. Hirahara, S. Hori, T. Sato, T. Matsuzawa, and Group for the aftershock observations of the 2011 off the Pacific coast of Tohoku Earthquake, “Details of the inland earthquake swarms induced by the 2011 Tohoku-Oki earthquake inferred from dense seismic observations,” 2018 Fall Meeting of Seismological Society of Japan, Session No.S22-03, 2018.
  6. [6] B. Shibazaki, T. Okada, J. Muto, T. Matsumoto, T. Yoshida, and K. Yoshida, “Heterogeneous stress state of island arc crust in northeastern Japan affected by hot mantle fingers,” J. Geophys. Res. Solid Earth, Vol.121, No.4, pp. 3099-3117, doi: 10.1002/2015JB012664, 2016.
  7. [7] R. Sasajima, B. Shibazaki, H. Iwamori, K. Yoshida, and H. Nakai, “Stress field in the forearc overriding plate before and after the 2011 Tohoku-Oki earthquake by numerical modeling of absolute stress,” 2018 Fall Meeting of Seismological Society of Japan, Session No.S22-10, 2018.
  8. [8] M. Ohzono, Y. Yabe, T. Iinuma, Y. Ohta, S. Miura, K. Tachibana, T. Sato, and T. Demachi, “Strain anomalies induced by the 2011 Tohoku Earthquake (Mw 9.0) as observed by a dense GPS network in northeastern Japan,” Earth Planets Space, Vol.64, No.12, pp. 1231-1238, doi: 10.5047/eps.2012.05.015, 2012.
  9. [9] J. Muto, B. Shibazaki, T. Iinuma, Y. Ito, Y. Ohta, S. Miura, and Y. Nakai, “Heterogeneous rheology controlled postseismic deformation of the 2011 Tohoku-Oki earthquake,” Geophys. Res. Lett., Vol.43, No.10, pp. 4971-4978, doi: 10.1002/2016GL068113, 2016.
  10. [10] Y. Ito, “Study on heterogeneous rheology from postseismic deformation of the 2011 Tohoku-Oki earthquake,” Master Thesis, Tohoku University, 2018 (in Japanese).
  11. [11] A. Saiga, S. Matsumoto, K. Uehira, T. Matsushima, and H. Shimizu, ”Velocity structure in the crust beneath the Kyushu area,” Earth Planets Space, Vol.62, pp. 449-462, doi: 10.6047/eps.2010.02.003, 2010.
  12. [12] S. Matsumoto, S. Nakao, T. Ohkura M. Miyazaki, H. Shimizu, Y. Abe, H. Inoue, M. Nakamoto, S. Yoshikawa, and Y. Yamashita, “Spatial heterogeneities in tectonic stress in Kyushu, Japan and their relation to a major shear zone,” Earth Planets Space, Vol.67, No.172, doi: 10.1186/s40623-015-0342-8, 2015.
  13. [13] K. Asano and T. Iwata, “Source rupture processes of the foreshock and mainshock in the 2016 Kumamoto earthquake sequence estimated from the kinematic waveform inversion of strong motion data,” Earth Planets Space, Vol.68, Article No.147, doi: 10.1186/s40623-016-0519-9, 2016.
  14. [14] Y. Shirahama, M. Yoshimi, Y. Awata, T. Maruyama, T. Azuma, Y. Miyashita, H. Mori, K. Imanishi, N. Takeda, T. Ochi, M. Otsubo, and D. Asahina, “Characteristics of the surface ruptures associated with the 2016 Kumamoto earthquake sequence, central Kyushu, Japan,” Earth Planets Space, Vol.68, Article No.191, doi: 10.1186/s40623-016-0559-1, 2016.
  15. [15] Y. Himematsu and M. Furuya, ”Fault source model for the 2016 Kumamoto earthquake sequence based on ALOS-2/PALSAR-2 pixel-offset data: evidence for dynamic slip partitioning,” Earth Planets Space, Vol.68, Article No.169, doi: 10.1186/s40623-016-0545-7, 2016.
  16. [16] Y. Fukahata and M. Hashimoto, “Simultaneous estimation of the dip angles and slip distribution on the faults of the 2016 Kumamoto earthquake through a weak nonlinear inversion of InSAR data,” Earth Planets Space, Vol.68, Article No.204, doi: 10.1186/s40623-016-0580-4, 2016.
  17. [17] S. Matsumoto, T. Nishimura, and T. Ohkura, “Inelastic strain rate in the seismogenic layer of Kyushu Island, Japan,” Earth Planets Space, Vol.68, Article No.207, doi: 10.1186/s40623-016-0584-0, 2016.
  18. [18] A. Shito, S. Matsumoto, H. Shimizu, T. Ohkura, H. Takahashi, S. Sakai, T. Okada, H. Miyamachi, M. Kosuga, Y. Maeda, M. Yoshimi, Y. Asano, and M. Okubo, “Seismic velocity structure in the source region of the 2016 Kumamoto earthquake sequence, Japan,” Geophys, Res. Lett., Vol.44, pp. 7766-7772, doi: 10.1002/2017GL074593, 2017.
  19. [19] S. Matsumoto, Y. Yamashita, M. Nakamoto, M. Miyazaki, S. Sakai, Y. Iio, H. Shimizu, K. Goto, T. Okada, M. Ohzono, T. Terakawa, M. Kosuga, M. Yoshimi, and Y. Asano, “Prestate of stress and fault behavior during the 2016 Kumamoto Earthquake (M7.3),” Geophys. Res. Lett., Vol.45, pp. 637-645, doi: 10.1002/2017GL075725, 2018.
  20. [20] R. Kawanishi, Y. Iio, Y. Yukutake, T. Shibutani, and H. Katao, “Local stress concentration in the seismic belt along the Japan Sea coast inferred from precise focal mechanisms: Implications for the stress accumulation process on intraplate earthquake faults,” J. Geophys. Res., Vol.114, Issue B1, doi: 10.1029/2008JB005765, 2009.
  21. [21] I. Shiozaki, N. Oshiman, M. Uyeshima, H. Murakami, S. Yamaguchi, S. Sakanaka, R. Yoshimura, Y. Kuwaba, and T. Yokoyama, “A two dimensional resistivity structure beneath the seismic gap in the eastern part of Shimane prefecture, San-in region, Japan,” 18th Int. Workshop on Electromagnetic Induction in the Earth, 2006.
  22. [22] J. Nakajima and A. Hasegawa, “Tomographic evidence for the mantle upwelling beneath southwestern Japan and its implications for arc magmatism,” Earth Planet. Sci. Lett., Vol.254, pp. 90-105, doi: 10.1016/j.epsl.2006.11.024, 2007.
  23. [23] H. Tsuda, Y. Iio, and T. Shibutani, “Origin of the seismic belt in the San-in district, southwest Japan, inferred from the seismic velocity structure of the lower crust,” Earth Planets Space, Vol.71, Article No.109, doi: 10.1186/s40623-019-1091-x, 2019.
  24. [24] Y. Iio, T. Sagiya, and Y. Kobayashi, “What controls the occurrence of shallow intraplate earthquakes?,” Earth Planets Space, Vol.56, pp. 1077-1086, doi: 10.1186/BF03353326, 2004.
  25. [25] Y. Iio, T. Sagiya, Y. Kobayashi, and I. Shiozaki, “Water-weakened lower crust and its role in the concentrated deformation in the Japanese Islands,” Earth Planet. Sci. Lett., Vol.203, pp. 245-253, doi: 10.1016/S0012-821X(02)00879-8, 2002.
  26. [26] A. Okada, “Characteristics of the active faults in the San’in district, western Japan,” Active Fault Res., Vol.22, pp. 17-32, 2002 (in Japanese with English abstract).
  27. [27] Y. Itoh, H. Tsutsumi, H. Yamamoto, and H. Arato, “Active right-lateral strike-slip fault zone along the southern margin of the Japan Sea,” Tectonophysics, Vol.351, pp. 301-314, doi: 10.1016/S0040-1951(02)00164-6, 2002.
  28. [28] Y. Yukutake, Y. Iio, H. Katao, and T. Shibutani, “Estimation of the stress field in the region of the 2000 Western Tottori earthquake: Using numerous aftershock focal mechanisms,” J. Geophys. Res., Vol.112, Issue B9, doi: 10.1029/2005JB004250, 2007.
  29. [29] Y. Yukutake and Y. Iio, “Why do aftershocks occur? Relationship between mainshock rupture and aftershock sequence based on highly resolved hypocenter and focal mechanism distributions,” Earth Planets Space, Vol.69, Article No.68, doi: 10.1186/s40623-017-0650-2, 2017.
  30. [30] T. Terakawa, A. Zoporowski, B. Galvan, and S. A. Miller, “High pressure fluid at hypo-central depths in the L’Aquila region inferred from earthquake focal mechanisms,” Geology, Vol.38, pp. 995-998, doi: 10.1130/G31457.1, 2010.
  31. [31] T. Terakawa, Y. Yamanaka, H. Nakamichi, T. Watanabe, F. Yamazaki, S. Horikawa, and T. Okuda, “Effects of pore fluid pressure and tectonic stress on diverse seismic activities around the Mt. Ontake volcano, central Japan,” Tectonophysics, Vol.608, pp. 138-148, doi: 10.1016/j.tecto.2013.10.005, 2013.
  32. [32] T. Terakawa, “Evolution of pore fluid pressures in a stimulated geothermal reservoir inferred from earthquake focal mechanisms,” Geophys. Res. Lett., Vol.41, pp. 7468-7476, doi: 10.1002/2014GL061908, 2014.
  33. [33] T. Terakawa, “Overpressurized fluids drive microseismic swarm activity around Mt. Ontake volcano, Japan,” EPS, Vol.69, No.1, pp. 1-10, 2017.
  34. [34] R. E. Wallace, “Geometry of shearing stress and relation of faulting,” The J. of Geology, Vol.59, No.2, pp. 118-130, 1951.
  35. [35] M. H. P. Bott, “The Mechanics of Oblique Slip Faulting,” Geological Magazine, Vol.96, pp. 109-117, doi: 10.1017/S0016756800059987, 1959.
  36. [36] T. Yabuki and M. Matsu’ura, “Geodetic data inversion using a bayesian information criterion for spatial-distribution of fault slip,” Geophysical J. Int., Vol.109, pp. 363-375, doi: 10.1111/j.1365-246X.1992.tb00102.x, 1992.
  37. [37] Y. Fukahata, A. Nishitani, and M. Matsu’ura, “Geodetic data inversion using ABIC to estimate slip history during one earthquake cycle with viscoelastic slip-response functions,” Geophys. J. Int., Vol.156, No.1, pp. 140-153, doi: 10.1111/j.1365-246X.2004.02122.x, 2004.
  38. [38] T. Terakawa, A. Kato, Y. Maeda, Y. Yamanaka, S. Horikawa, K. Matsuhiro, and T. Okuda, “Monitoring eruption activity from temporal stress changes at Mt. Ontake volcano, Japan,” Nature Communications, Vol.7, Article No.10797, doi: 10.1038/ncomms10797, 2016.
  39. [39] W. Siripunvaraporn, G. Egbert, Y. Lenbury, and M. Uyeshima, “Three-dimensional magnetotelluric inversion: data space method,” Phys. Earth Planet. Inter., Vol.150, pp. 3-14, doi: 10.1016/j.pepi.2004.08.023, 2005.
  40. [40] W. Siripunvaraporn and G. Egbert, “WSINV3DMT: Vertical magnetic field transfer function inversion and parallel implementation,” Phys. Earth Planet. Inter., Vol.173, pp. 317-329, doi: 10.1016/j.pepi.2009.01.013, 2009.
  41. [41] A. Kelbert, N. Meqbel, G. D. Egbert, and K. Tandon, “ModEM: A Modular System for Inversion of Electromagnetic Geophysical Data,” Comp. Geosci., Vol.66, pp. 40-53, doi: 10.1016/j.cageo.2014.01.010, 2014.
  42. [42] Y. Usui, “3-D inversion of magnetotelluric data using unstructured tetrahedral elements: applicability to data affected by topography,” Geophys. J. Int., Vol.202, pp. 828-849, doi: 10.1093/gji/ggv186, 2015.
  43. [43] M. Uyeshima, Y. Ogawa, M. Ichiki, and W. Siripunvaraporn, “Development of 3-D inversion code using phase tensors and induction vectors and its application to the Iwaki source regions of normal faulting sequences,” 26th Int. Union of Geodesy and Geophysics (IUGG) General Assembly, 2015.
  44. [44] K. Umeda, K. Asamori, A. Makuuchi, K. Kobori, and Y. Hama, “Triggering of earthquake swarms following the 2011 Tohoku megathrust earthquake,” J. Geophys. Res., Vol.120, pp. 2279-2291, doi: 10.1002/2014JB011598, 2015.
  45. [45] Y. Ogawa, M. Mishina, T. Goto, H. Satoh, N. Oshiman, T. Kasaya, Y. Takahashi, T. Nishitani, S. Sakanaka, M. Uyeshima, Y. Takahashi, Y. Honkura, and M. Matsushima, “Magnetotelluric imaging of fluids in intraplate earthquake zones, NE Japan Back Arc,” Geophys. Res. Lett., Vol.28, pp. 3741-3744, doi: 10.1029/2001GL013269, 2001.
  46. [46] R. Yoshimura, N. Oshiman, M. Uyeshima, H. Toh, T. Uto, H. Kanezaki, Y. Mochido, K. Aizawa, Y. Ogawa, T. Nishitani, S. Sakanaka, M. Mishina, H. Satoh, T. Goto, T. Kasaya, S. Yamaguchi, H. Murakami, T. Mogi, Y. Yamaya, M. Harada, I. Shiozaki, Y. Honkura, S. Koyama, S. Nakao, Y. Wada, and Y. Fujita, “Magnetotelluric transect across the Niigata-Kobe Tectonic Zone, central Japan: A clear correlation between strain accumulation and resistivity structure,” Gephys. Res. Lett., Vol.36, doi: 10.1029/2009GL040016, 2009.
  47. [47] H. Ichihara, S. Sakanaka, M. Mishina, M. Uyeshima, T. Nishitani, Y. Ogawa, Y. Yamaya, T. Mogi, K. Amita, and T. Miura, “A 3-D electrical resistivity model beneath the focal zone of the 2008 Iwate-Miyagi Nairiku earthquake (M 7.2),” Earth Planets Space, Vol.66, doi: 10.1186/1880-5981-66-50, 2014.
  48. [48] Y. Ogawa, M. Ichiki, W. Kanda, M. Mishina, and K. Asamori, “Three-dimensional magnetotelluric imaging of crustal fluids and seismicity around Naruko volcano, NE Japan,” Earth Planets Space, Vol.66, doi: 10.1186/s40623-014-0158-y, 2014.
  49. [49] H. Ichihara, J. Kanehiro, T. Mogi, K. Yamaoka, N. Tada, E. A. Bertrand, and M. Adachi, “A 3D electrical resistivity model around the focal zone of the 2017 southern Nagano Prefecture earthquake (MJMA 5.6): implications for relationship between seismicity and crustal heterogeneity,” Earth Planets Space, Vol.70, doi: 10.1186/s40623-018-0950-1, 2018.
  50. [50] K. Aizawa, H. Asaue, K. Koike, S. Takakura, M. Utsugi, H. Inoue, R. Yoshimura, K. Yamazaki, S. Komatsu, M. Uyeshima, T. Koyama, W. Kanda, T. Shiotani, N. Matsushima, M. Hata, T. Yoshinaga, K. Uchida, Y. Tsukashima, A. Shito, S. Fujita, A. Wakabayashi, K. Tsukamoto, T. Matsushima, M. Miyazaki, K. Kondo, K. Takashima, T. Hashimoto, M. Tamura, S. Matsumoto, Y. Yamashita, M. Nakamoto, and H. Shimizu, “Seismicity controlled by resistivity structure: the 2016 Kumamoto earthquakes, Kyushu Island, Japan,” Earth Planets Space, Vol.69, doi: 10.1186/s40623-016-0590-2, 2017.
  51. [51] M. Hata, S. Takakura, N. Matsushima, T. Hashimoto, and M. Utsugi, “Crustal magma pathway beneath Aso caldera inferred from three-dimensional electrical resistivity structure,” Geophys. Res. Lett., Vol.43, pp. 10720-10727, doi: 10.1002/2016GL070315, 2016.
  52. [52] M. Hata, N. Matsushima, S. Takakura, M. Utsugi, T. Hashimoto, and M. Uyeshima, “Three-dimensional electrical resistivity modeling to elucidate the crustal magma supply system beneath Aso caldera, Japan,” J. Geophys. Res., Vol.123, pp. 6334-6346, doi: 10.1029/2018JB015951, 2018.
  53. [53] K. Aizawa, H. Sumino, M. Uyeshima, Y. Yamaya, H. Hase, H. Takahashi, M. Takahashi, K. Kazahaya, M. Ohno, T. Rung-Arunwan, and Y. Ogawa, “Gas pathways and remotely triggered earthquakes beneath Mount Fuji, Japan,” Geology, Vol.44, pp. 127-130, doi: 10.1130/G37313.1, 2016.
  54. [54] M. Uyeshima, Y. Ogawa, Y. Honkura, S. Koyama, N. Ujihara, T. Mogi, Y. Yamaya, M. Harada, S. Yamaguchi, I. Shiozaki, T. Noguchi, Y. Kuwaba, Y. Tanaka, Y. Mochido, N. Manabe, M. Nishihara, M. Saka, and M. Serizawa, “Resistivity imaging across the source region of the 2004 Mid-Niigata Prefecture earthquake (M6.8), central Japan,” Earth Planets Space, Vol.57, pp. 441-446, doi: 10.1186/BF03351831, 2005.
  55. [55] H. Ichihara, M. Uyeshima, S. Sakanaka, T. Ogawa, M. Mishina, Y. Ogawa, T. Nishitani, Y. Yamaya, A. Watanabe, Y. Morita, R. Yoshimura, and Y. Usui, “A fault-zone conductor beneath a compressional inversion zone, northeastern Honshu, Japan,” Geophys. Res. Lett., Vol.38, doi: 10.1029/2011GL047382, 2011.
  56. [56] R. H. Sibson, “Rupture nucleation on unfavorably oriented faults,” Bull. Seis. Soc. Am., Vol.80, No.6, pp. 1580-1604, 1990.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 22, 2024