single-dr.php

JDR Vol.15 No.2 pp. 87-95
(2020)
doi: 10.20965/jdr.2020.p0087

Review:

Main Results from the Program Promotion Panel for Subduction-Zone Earthquakes

Kazushige Obara*,† and Takuya Nishimura**

*Earthquake Research Institute, The University of Tokyo
1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan

Corresponding author

**Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan

Received:
August 30, 2019
Accepted:
November 26, 2019
Published:
March 20, 2020
Keywords:
subduction zone earthquake, slow earthquake, intraslab earthquake, infrequent huge earthquake
Abstract

Understanding the occurrence mechanism of subduction zone earthquakes scientifically is intrinsically important for not only forecast of future subduction earthquakes but also disaster mitigation for strong ground motion and tsunami accompanied by large earthquakes. The Program Promotion Panel for Subduction-zone earthquakes mainly focused on interplate megathrust earthquakes in the subduction zones and the research activity included collection and classification of historical data on earthquake phenomena, clarifying the current earthquake phenomena and occurrence environment of earthquake sources, modelling earthquake phenomena, forecast of further earthquake activity based on monitoring crustal activity and precursory phenomena, and development of observation and analysis technique. Moreover, we studied the occurrence mechanism of intraslab earthquakes within the subducting oceanic plate. Five-year observational research program actually produced enormous results for deep understanding of subduction zone earthquakes phenomena, especially in terms of slow earthquakes, infrequent huge earthquakes, and intraslab earthquakes. This paper mainly introduces results from researches on these phenomena in subduction zones.

Cite this article as:
K. Obara and T. Nishimura, “Main Results from the Program Promotion Panel for Subduction-Zone Earthquakes,” J. Disaster Res., Vol.15, No.2, pp. 87-95, 2020.
Data files:
References
  1. [1] K. Obara and A. Kato, “Connecting slow earthquakes to huge earthquakes,” Science, Vol.353, Issue 6296, pp. 253-257, doi: 10.1126/science.aaf1512, 2016.
  2. [2] Y. Ito, R. Hino, M. Kido, H. Fujimoto, Y. Osada, D. Inazu, Y. Ohta, T. Iinuma, M. Ohzono, S. Miura, M. Mishina, K. Suzuki, T. Tsuji, and J. Ashi, “Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake,” Tectonophysics, Vol.600, pp. 14-26, doi: 10.1016/j.tecto.2012.08.022, 2013.
  3. [3] A. Kato, K. Obara, T. Igarashi, H. Tsuruoka, S. Nakagawa, and N. Hirata, “Propagation of Slow Slip Leading Up to the 2011 Mw 9.0 Tohoku-Oki Earthquake,” Science, Vol.335, Issue 6069, pp. 705-708, doi: 10.1126/science.1215141, 2012.
  4. [4] S. Ruiz, M. Metois, A. Fuenzalida, J. Ruiz, F. Leyton, R. Grandin, C. Vigny, R. Madariaga, and J. Campos, “Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw 8.1 earthquake,” Science, Vol.345, Issue 6201, pp. 1165-1169, doi: 10.1126/science.1256074, 2014.
  5. [5] M. Radiguet, H. Perfettini, N. Cotte, A. Gualandi, B. Valette, V. Kostoglodov, T. Lhomme, A. Walpersdorf, E. Cabral Cano, and M. Campillo, “Triggering of the 2014 Mw7.3 Papanoa earthquake by a slow slip event in Guerrero, Mexico,” Nature Geoscience, Vol.9, Issue 11, pp. 829-833, doi: 10.1038/ngeo2817, 2016.
  6. [6] S. E. Graham, C. DeMets, E. Cabral-Cano, V. Kostoglodov, A. Walpersdorf, N. Cotte, M. Brudzinski, R. McCaffrey, and L. Salazar-Tlaczani, “GPS constraints on the 2011–2012 Oaxaca slow slip event that preceded the 2012 March 20 Ometepec earthquake, southern Mexico,” Geophysical J. Int., Vol.197, Issue 3, pp. 1593-1607, doi: 10.1093/gji/ggu019, 2014.
  7. [7] N. Uchida, T. Iinuma, R. M. Nadeau, R. Bürgmann, and R. Hino, “Periodic slow slip triggers megathrust zone earthquakes in northeastern Japan,” Science, Vol.351, Issue 6272, pp. 488-492, doi: 10.1126/science.aad3108, 2016.
  8. [8] T. Nishimura, “Short-term slow slip events along the Ryukyu Trench, southwestern Japan, observed by continuous GNSS,” Progress in Earth and Planetary Science, Vol.1, Article No.22, doi: 10.1186/s40645-014-0022-5, 2014.
  9. [9] R. Takagi, N. Uchida, and K. Obara, “Along-Strike Variation and Migration of Long-Term Slow Slip Events in the Western Nankai Subduction Zone, Japan,” JGR Solid Earth, Vol.124, Issue 4, pp. 3853-3880, doi: 10.1029/2018JB016738, 2019.
  10. [10] S. Nomura, Y. Ogata, N. Uchida, and M. Matsu’ura, “Spatiotemporal variations of interplate slip rates in northeast Japan inverted from recurrence intervals of repeating earthquakes,” Geophysical J. Int., Vol.208, Issue 1, pp. 468-481, doi: 10.1093/gji/ggw395, 2017.
  11. [11] K. Oohashi, T. Hirose, M. Takahashi, and W. Tanikawa, “Dynamic weakening of smectite-bearing faults at intermediate velocities: Implications for subduction zone earthquakes,” JGR Solid Earth, Vol.120, Issue 3, pp. 1572-1586. doi: 10.1002/2015JB011881, 2015.
  12. [12] M. Sawai, A. R. Niemeijer, T. Hirose, and C. J. Spiers, “Frictional properties of JFAST core samples and implications for slow earthquakes at the Tohoku subduction zone,” Geophysical Research Letters, Vol.44, Issue 17, pp. 8822-8831, doi: 10.1002/2017GL073460, 2017.
  13. [13] J. Fukuda, “Variability of the Space-Time Evolution of Slow Slip Events Off the Boso Peninsula, Central Japan, From 1996 to 2014,” JGR Solid Earth, Vol.123, Issue 1, pp. 732-760, doi: 10.1002/2017JB014709, 2018.
  14. [14] M. Kano, J. Fukuda, S. Miyazaki, and M. Nakamura, “Spatiotemporal Evolution of Recurrent Slow Slip Events Along the Southern Ryukyu Subduction Zone, Japan, From 2010 to 2013,” JGR Solid Earth, Vol.123, Issue 8, pp. 7090-7107, doi: 10.1029/2018JB016072, 2018.
  15. [15] M. Kano, S. Miyazaki, Y. Ishikawa, Y. Hiyoshi, K. Ito, and K. Hirahara, “Real data assimilation for optimization of frictional parameters and prediction of afterslip in the 2003 Tokachi-oki earthquake inferred from slip velocity by an adjoint method,” Geophysical J. Int., Vol.203, Issue 1, pp. 646-663, doi: 10.1093/gji/ggv289, 2015.
  16. [16] J. Nakajima and A. Hasegawa, “Tremor activity inhibited by well-drained conditions above a megathrust,” Nature Communications, Vol.7, Article No.13863, doi: 10.1038/ncomms13863, 2016.
  17. [17] S. Kita and M. Matsubara, “Seismic attenuation structure associated with episodic tremor and slip zone beneath Shikoku and the Kii peninsula, southwestern Japan, in the Nankai subduction zone,” JGR Solid Earth, Vol.121, Issue 3, pp. 1962-1982, doi: 10.1002/2015JB012493, 2016.
  18. [18] A. Kono, T. Sato, M. Shinohara, K. Mochizuki, T. Yamada, K. Uehira, T. Shinbo, Y. Machida, R. Hino, and R. Azuma, “Geometry and spatial variations of seismic reflection intensity of the upper surface of the Philippine Sea plate off the Boso Peninsula, Japan,” Tectonophysics, Vol.709, pp. 44-54, doi: 10.1016/j.tecto.2017.05.001, 2017.
  19. [19] J. Nakajima and N. Uchida, “Repeated drainage from megathrusts during episodic slow slip,” Nature Geoscience, Vol.11, Issue 5, pp. 351-356, doi: 10.1038/s41561-018-0090-z, 2018.
  20. [20] S. Watanabe, M. Sato, M. Fujita, T. Ishikawa, Y. Yokota, N. Ujihara, and A. Asada, “Evidence of viscoelastic deformation following the 2011 Tohoku-Oki earthquake revealed from seafloor geodetic observation,” Geophysical Research Letters, Vol.41, Issue 16, pp. 5789-5796, doi: 10.1002/2014GL061134, 2014.
  21. [21] F. Tomita, M. Kido, Y. Ohta, T. Iinuma, and R. Hino, “Along-trench variation in seafloor displacements after the 2011 Tohoku earthquake,” Science Advances, Vol.3, No.7, Article No.e1700113, doi: 10.1126/sciadv.1700113, 2017.
  22. [22] Y. Yokota, T. Ishikawa, S. Watanabe, T. Tashiro, and A. Asada, “Seafloor geodetic constraints on interplate coupling of the Nankai Trough megathrust zone,” Nature, Vol.534, Issue 7607, pp. 374-377, doi: 10.1038/nature17632, 2016.
  23. [23] K. Yasuda, K. Tadokoro, S. Taniguchi, H. Kimura, and K. Matsuhiro, “Interplate locking condition derived from seafloor geodetic observation in the shallowest subduction segment at the Central Nankai Trough, Japan,” Geophysical Research Letters, Vol.44, Issue 8, pp. 3572-3579, doi: 10.1002/2017GL072918, 2017.
  24. [24] S. Yamagiwa, S. Miyazaki, K. Hirahara, and Y. Fukahata, “Afterslip and viscoelastic relaxation following the 2011 Tohoku-oki earthquake (Mw9.0) inferred from inland GPS and seafloor GPS/Acoustic data,” Geophysical Research Letters, Vol.42, Issue 1, pp. 66-73, doi: 10.1002/2014GL061735, 2015.
  25. [25] J. Muto, B. Shibazaki, T. Iinuma, Y. Ito, Y. Ohta, S. Miura, and Y. Nakai, “Heterogeneous rheology controlled postseismic deformation of the 2011 Tohoku-Oki earthquake,” Geophysical Research Letters, Vol.43, Issue 10, pp. 4971-4978, doi: 10.1002/2016GL068113, 2016.
  26. [26] T. Iinuma, R. Hino, N. Uchida, W. Nakamura, M. Kido, Y. Osada, and S. Miura, “Seafloor observations indicate spatial separation of coseismic and postseismic slips in the 2011 Tohoku earthquake,” Nature Communications, Vol.7, Article No.13506, doi: 10.1038/ncomms13506, 2016.
  27. [27] T. Nishimura, Y. Yokota, K. Tadokoro, and T. Ochi, “Strain partitioning and interplate coupling along the northern margin of the Philippine Sea plate, estimated from Global Navigation Satellite System and Global Positioning System-Acoustic data,” Geosphere, Vol.14, No.2, pp. 535-551, doi: 10.1130/GES01529.1, 2018.
  28. [28] Y. Yokota and T. Ishikawa, “Shallow long-term slow slip events along the Nankai Trough detected by the GNSS-A,” EarthArXiv, doi: 10.31223/osf.io/vq6ca, 2019.
  29. [29] M. Shinohara, T. Yamada, H. Shiobara, and Y. Yamashita, “Development and Evaluation of Compact Long-Term Broadband Ocean Bottom Seismometer,” Proc. of 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO), pp. 1-4, doi: 10.1109/OCEANSKOBE.2018.8559338, 2018.
  30. [30] E. Araki, D. M. Saffer, A. J. Kopf, L. M. Wallace, T. Kimura, Y. Machida, S. Ide, E. Davis, and IODP Expedition 365 shipboard scientists, “Recurring and triggered slow-slip events near the trench at the Nankai Trough subduction megathrust,” Science, Vol.356, Issue 6343, pp. 1157-1160, doi: 10.1126/science.aan3120, 2017.
  31. [31] M. Nakano, T. Hori, E. Araki, S. Kodaira, and S. Ide, “Shallow very-low-frequency earthquakes accompany slow slip events in the Nankai subduction zone,” Nature Communications, Vol.9, Article No.984, doi: 10.1038/s41467-018-03431-5, 2018.
  32. [32] Y. Sawai, Y. Namegaya, T. Tamura, R. Nakashima, and K. Tanigawa, “Shorter intervals between great earthquakes near Sendai: Scour ponds and a sand layer attributable to A.D. 1454 overwash,” Geophysical Research Letters, Vol.42, Issue 12, pp. 4795-4800, doi: 10.1002/2015GL064167, 2015.
  33. [33] K. Ioki and Y. Tanioka, “Re-estimated fault model of the 17th century great earthquake off Hokkaido using tsunami deposit data,” Earth and Planetary Science Letters, Vol.433, pp. 133-138, doi: 10.1016/j.epsl.2015.10.009, 2016.
  34. [34] S. Fujino, H. Kimura, J. Komatsubara, D. Matsumoto, Y. Namegaya, Y. Sawai, and M. Shishikura, “Stratigraphic evidence of historical and prehistoric tsunamis on the Pacific coast of central Japan: Implications for the variable recurrence of tsunamis in the Nankai Trough,” Quaternary Science Reviews, Vol.201, pp. 147-161, doi: 10.1016/j.quascirev.2018.09.026, 2018.
  35. [35] J. Komori, M. Shishikura, R. Ando, Y. Yokoyama, and Y. Miyairi, “History of the great Kanto earthquakes inferred from the ages of Holocene marine terraces revealed by a comprehensive drilling survey,” Earth and Planetary Science Letters, Vol.471, pp. 74-84, doi: 10.1016/j.epsl.2017.04.044, 2017.
  36. [36] M. Shishikura, T. Kamataki, K. Takada, K. Suzuki, and Y. Okamura, “Survey report of emerged beach ridges in the southwestern part of Boso Peninsula – Timing of the Taisho-type Kanto earthquake –,” Annual Report on Active Fault and Paleoearthquake Researches, No.5, pp. 51-68, 2005 (in Japanese with English abstract and figure captions).
  37. [37] J. Nakajima, “Isolated intermediate-depth seismicity north of the Izu peninsula, Japan: implications for subduction of the Philippine Sea plate,” Earth, Planets and Space, Vol.70, Article No.11, doi: 10.1186/s40623-018-0779-7, 2018.
  38. [38] I. Wada, J. He, A. Hasegawa, and J. Nakajima, “Mantle wedge flow pattern and thermal structure in Northeast Japan: Effects of oblique subduction and 3-D slab geometry,” Earth and Planetary Science Letters, Vol.426, pp. 76-88, doi: 10.1016/j.epsl.2015.06.021, 2015.
  39. [39] I. Wada and J. He, “Thermal structure of the Kanto region, Japan,” Geophysical Research Letters, Vol.44, Issue 14, pp. 7194-7202, doi: 10.1002/2017GL073597, 2017.
  40. [40] R. Shiraishi, A. Tsunoda, J. Muto, A. Suzuki, and S. Sawa, “Dehydration and deformation property of lawsonite: Clarification of intermediate-depth earthquakes,” Photon Factory Activity Report 2018, Vol.36, 2019 (in Japanese).
  41. [41] M. Hyodo, T. Hori, and Y. Kaneda, “A possible scenario for earlier occurrence of the next Nankai earthquake due to triggering by an earthquake at Hyuga-nada, off southwest Japan,” Earth, Planets and Space, Vol.68, Article No.6, doi: 10.1186/s40623-016-0384-6, 2016.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Oct. 23, 2020