single-dr.php

JDR Vol.14 No.5 pp. 701-712
(2019)
doi: 10.20965/jdr.2019.p0701

Paper:

Muographic Observation of Density Variations in the Vicinity of Minami-Dake Crater of Sakurajima Volcano

László Oláh*,†, Hiroyuki K. M. Tanaka*, Gergő Hamar**, and Dezső Varga**

*Earthquake Research Institute, The University of Tokyo
1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan

Corresponding author

**Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Budapest, Hungary

Received:
January 21, 2019
Accepted:
May 7, 2019
Published:
August 1, 2019
Keywords:
muography, density imaging, volcanoes, tracking detectors, MWPC
Abstract

Muography is an innovative imaging technique used for inspecting and monitoring density-length variations of large-sized natural or human-made objects based on the measurement of the absorption rate of cosmic-ray muons. The first large-sized, high-resolution muography observatory based on Multi-Wire Proportional Chamber (MWPC) technology is being developed to monitor the mass density variations in the vicinity of Minami-dake crater of Sakurajima volcano. We found that the track rates provided by five ongoing tracking systems with a total surface area of 4 m2 are stable within ±3% from the backward direction, which demonstrates that the MWPC-based Muographic Observation System (MMOS) is applicable for the detection of average density variations above 2%, which is well below the practical limit of 5%. We quantified the time resolution of the designed muography observatory by modeling the muon flux across the volcano; the average density-length variation of 5 (10)% is expected to be detected within 5–20 (2–8) days at a 1σ (68%) confidence level (CL) with an MMOS orientation of 10.86° above the horizon. An automated analysis framework was developed as a data base for raw data reconstruction, analysis, and preparation, and which is accessible via web-server. We observed a more than 2σ CL decrease in average density across the West side of Crater A during the ongoing data collection period. The observed density decrease suggests that the amount of material has decreased inside Crater A due to the consecutive eruptions of Minami-dake during the data collection period from November 30, 2018 to January 11, 2019.

Cite this article as:
L. Oláh, H. Tanaka, G. Hamar, and D. Varga, “Muographic Observation of Density Variations in the Vicinity of Minami-Dake Crater of Sakurajima Volcano,” J. Disaster Res., Vol.14 No.5, pp. 701-712, 2019.
Data files:
References
  1. [1] Y. Morishita, T. Kobayashi, and H. Yarai, “Three-dimensional deformation mapping of a dike intrusion event in Sakurajima in 2015 by exploiting the right- and left-looking ALOS-2 InSAR,” Geophysical Research Letters, Vol.43, No.9, pp. 4197-4204, 2016.
  2. [2] T. Sakai, O. Uchino, I. Morino, T. Nagai, T. Akaho, T. Kawasaki, H. Okumura, K. Arai, A. Uchiyama, A. Yamazaki, T. Matsunaga, and T. Yokota, “Vertical Distribution and Optical Properties of Volcanic Ash from Mt. Sakurajima Detected with Lidar and Skyradiometer Over Saga,” J. of The Remote Sensing Society of Japan, Vol.34, No.3, pp. 197-204, 2014.
  3. [3] D. Muramatsu, K. Aizawa, A. Yokoo, M. Iguchi, and T. Tameguri, “Estimation of vent radii from video recordings and infrasound data analysis: Implications for Vulcanian eruptions from Sakurajima volcano, Japan,” Geophysical Research Letters, Vol.45, No.23, pp. 12829-12836, 2018.
  4. [4] J. Hickey, J. Gottsmann, H. Nakamichi, and M. Iguchi, “Thermomechanical controls on magma supply and volcanic deformation: application to Aira caldera, Japan,” Nature, Scientific Reports 6, Article No.32691, 2016.
  5. [5] H. Kawakatsu, T. Ohminato H. Ito, Y. Kuwahara, T. Kato, K. Tsuruga, S. Honda, and K. Yomogida, “Broadband seismic observation at the Sakurajima Volcano, Japan,” Geophysical Research Letters, Vol.19, No.19, pp. 1959-1962, 1992.
  6. [6] R. Kazahaya, H. Shinohara, T. Mori, M. Iguchi, and A. Yokoo, “Pre-eruptive inflation caused by gas accumulation: Insight from detailed gas flux variation at Sakurajima volcano, Japan,” Geophysical Research Letters, Vol.43, No.21, pp. 11219-11225, 2016.
  7. [7] H. K. M. Tanaka, T. Nakano, S. Takahashi, J. Yoshida, M. Takeo, J. Oikawa, T. Ohminato, Y. Aoki, E. Koyama, H. Tsuji, and K. Niwa, “High resolution imaging in the inhomogeneous crust with cosmic-ray muon radiography: The density structure below the volcanic crater floor of Mt. Asama, Japan,” Earth and Planetary Science Letters, Vol.263, No.1-2, pp. 104-113, 2007.
  8. [8] H. K. M. Tanaka and H. Watanabe, “6Li-loaded directionally sensitive anti-neutrino detector for possible geo-neutrinographic imaging applications,” Nature, Scientific Reports 4, Article No.4708, 2014.
  9. [9] M. C. Gonzalez-Garcia, F. Halzen, M. Maltoni, and H. K. M. Tanaka, “Radiography of Earth’s core and mantle with atmospheric neutrinos,” Physical Review Letters, Vol.100, No.6, 061802, 2008.
  10. [10] C. Rott, A. Taketa, and D. Bose, “Spectrometry of the Earth using Neutrino Oscillations,” Nature, Scientific Reports 5, Article No.15225, 2015.
  11. [11] H. K. M.Tanaka, T. Kusagaya, and H. Shinohara, “Radiographic visualization of magma dynamics in an erupting volcano,” Nature, Nature Communications 5, Article No.3381, 2014.
  12. [12] L. Oláh, G. G. Barnaföldi, G. Hamar, H. G. Melegh, G. Surányi, and D. Varga, “CCC-based muon telescope for examination of natural caves,” Geosci. Instrum. Method. Data Syst., No.1, pp. 229-234, 2012.
  13. [13] S. Miyamoto, J. Barrancos, C. Bozza, L. Consiglio, C. De Sio, P. Hernández, R. Nishiyama, G. Padilla, E. Padrón, C. Sirignano, S. M. Stellacci, H. K. M. Tanaka, and V. Tioukov, “Muography of 1949 fault in La Palma, Canary Islands, Spain,” Ann. of Geophys., Vol.60, No.1, S0110, 2017.
  14. [14] R. Nishiyama, A. Ariga, T. Ariga, S. Käser, A. Lechmann, D. Mair, P. Scampoli, M. Vladymyrov, A. Ereditato, and F. Schlunegger, “First measurement of ice-bedrock interface of alpine glaciers by cosmic muon radiography,” Geophysical Research Letters, Vol.44, No.12, pp. 6244-6251, 2017.
  15. [15] J. Perry, M. Azzouz, J. Bacon, K. Borozdin, E. Chen, J. Fabritius II, E. Milner, H. Miyadera, C. Morris, J. Roybal, Z. Wang, B. Busch, K. Carpenter, A. A. Hecht, K. Masuda, C. Spore, N. Toleman, D. Aberle, and Z. Lukić, “Imaging a nuclear reactor using cosmic ray muons,” J. of Applied Physics, Vol.113, No.18, 184909, 2013.
  16. [16] D. Schouten, “Muon geotomography: selected case studies,” Phil. Trans. R. Soc. A, Vol.377, No.2137, Article ID 20180061, 2018.
  17. [17] J. Gluyas, L. Thompson, D. Allen, C. Benton, P. Chadwick, S. Clark, J. Klinger, V. Kudryavtsev, D. Lincoln, B. Maunder, C. Mitchell, S. Nolan, S. Paling, N. Spooner, L. Staykov, S. Telfer, D. Woodward, and M. Coleman, “Passive, continuous monitoring of carbon dioxide geostorage using muon tomography,” Phil. Trans. R. Soc. A, Vol.377, No.2137, Article ID 20180059, 2018.
  18. [18] A. Bonneville, R. Kouzes, J. Yamaoka, A. Lintereur, J. Flygare, G. S. Varner, I. Mostafanezhad, E. Guardincerri, C. Rowe, and R. Mellors, “Borehole muography of subsurface reservoirs,” Phil. Trans. R. Soc. A, Vol.377, No.2137, Article ID 20180060, 2018.
  19. [19] L. Oláh, G. Hamar, S. Miyamoto, H. K. M. Tanaka, and D. Varga, “The first prototype of an MWPC-based borehole-detector and its application for muography of an underground pillar,” BUTSURI-TANSA (Geophysical Exploration), Vol.71, pp. 161-168, 2018.
  20. [20] K. Morishima, M. Kuno, A. Nishio, N. Kitagawa, Y. Manabe, M. Moto, F. Takasaki, H. Fujii, K. Satoh, H. Kodama, K. Hayashi, S. Odaka, S. Procureur, D. Attié, S. Bouteille, D. Calvet, C. Filosa, P. Magnier, I. Mandjavidze, M. Riallot, B. Marini, P. Gable, Y. Date, M. Sugiura, Y. Elshayeb, T. Elnady, M. Ezzy, E. Guerriero, V. Steiger, N. Serikoff, J.-B. Mouret, B. Charlès, H. Helal, and M.Tayoubi, “Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons,” Nature, Vol.552, No.7685, pp. 386-390, 2017.
  21. [21] G. Saracino, F. Ambrosino, L. Bonechi, L. Cimmino, R. D’Alessandro, M. D’Errico, P. Noli, L. Scognamiglio, and P. Strolin, “Applications of muon absorption radiography to the fields of archaeology and civil engineering,” Phil. Trans. R. Soc. A, Vol.377, No.2137, Article ID 20180057, 2018.
  22. [22] T. K. Gaisser, “Cosmic Rays and Particle Physics,” Cambridge University Press, 1990.
  23. [23] M. Guan, M.-C. Chu, J. Cao, K.-B. Luk, and C. Yang, “A parametrization of the cosmic-ray muon flux at sea-level,” arXiv:1509.06176, 2015.
  24. [24] D. E. Groom, N. V. Mokhov, and S. I. Striganov, “Muon stopping power and range tables 10 MeV–100 TeV,” Atomic Data and Nuclear Data Tables, Vol.78, No.2, pp. 183-356, 2002.
  25. [25] K. Nagamine, M. Iwasaki, K. Shimomura, and K. Ishida, “Method of probing inner-structure of geophysical substance with the horizontal cosmic-ray muons and possible application to volcanic eruption prediction,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol.356, No.2-3, pp. 585-595, 1995.
  26. [26] T. Kusagaya and H. K. M. Tanaka, “Development of the very long-range cosmic-ray muon radiographic imaging technique to explore the internal structure of an erupting volcano, Shinmoe-dake, Japan,” Geosci. Instrum. Method. Data Syst., No.4, pp. 215-226, 2015.
  27. [27] R. Nishiyama, A. Taketa, S. Miyamoto, and K. Kasahara, “Monte Carlo simulation for background study of geophysical inspection with cosmic-ray muons,” Geophys. J. Int., Vol.206, No.2, pp. 1039-1050, 2016.
  28. [28] N. Lesparre, D. Gibert, J. Marteau, J-C. Komorowski, F. Nicollin, and O. Coutant, “Density muon radiography of La Soufrière of Guadeloupe volcano: comparison with geological, electrical resistivity and gravity data,” Geophys. J. Int., Vol.190, No.2, pp. 1008-1019, 2012.
  29. [29] D. Carbone, D. Gibert, J. Marteau, M. Diament, L. Zuccarello, and E. Galichet, “An experiment of muon radiography at Mt Etna (Italy),” Geophys. J. Int., Vol.196, No.2, pp. 633-643, 2014.
  30. [30] F. Ambrosino, A. Anastasio, A. Bross, S. Béné, P. Boivin, L. Bonechi, C. Cârloganu, R. Ciaranfi, L. Cimmino, Ch. Combaret, R. D’Alessandro, S. Durand, F. Fehr, V. Français, F. Garufi, L. Gailler, Ph. Labazuy, I. Laktineh, J.-F. Lénat, V. Masone, D. Miallier, L. Mirabito, L. Morel, N. Mori, V. Niess, P. Noli, A. Pla-Dalmau, A. Portal, P. Rubinov, G. Saracino, E. Scarlini, P. Strolin, and B. Vulpescu, “Joint measurement of the atmospheric muon flux through the Puy de Dôme volcano with plastic scintillators and Resistive Plate Chambers detectors,” JGR Solid Earth, Vol.120, No.11, pp. 7290-7307, 2015.
  31. [31] L. Oláh, H. K. M. Tanaka, T. Ohminato, and D. Varga, “High-definition and low-noise muography of the Sakurajima volcano with gaseous tracking detectors,” Nature, Scientific Reports 8, Article No.3207, 2018.
  32. [32] L. Oláh, H. K. M. Tanaka, G. Hamar, and D. Varga, “Investigation of the limits of high-definition muography for observation of Mt Sakurajima,” Phil. Trans. R. Soc. A, Vol.377, No.2137, Article ID 20180135, 2018.
  33. [33] K. Jourde, D. Gibert, J. Marteau, J. de Bremond d’Ars, S. Gardien, C. Girerd, J.-C. Ianigro, and D. Carbone, “Experimental detection of upward going cosmic particles and consequences for correction of density radiography of volcanoes,” Geophys. Res. Lett., Vol.40, No.24, pp. 6334-6339, 2013.
  34. [34] A. Lechmann, D. Mair, A. Ariga, T. Ariga, A. Ereditato, R. Nishiyama, C. Pistillo, P. Scampoli, F. Schlunegger, and M. Vladymyrov, “The effect of rock composition on muon tomography measurements,” Solid Earth, Vol.9, No.6, pp. 1517-1533, 2018.
  35. [35] N. Lesparre, D. Gibert, J. Marteau, Y. Déclais, D. Carbone, and E. Galichet, “Geophysical muon imaging: feasibility and limits,” Geophys. J. Int., Vol.183, No.3, pp. 1348-1361, 2010.
  36. [36] H. K. M. Tanaka, T. Uchida, M. Tanaka, H. Shinohara, and H. Taira, “Cosmic-ray muon imaging of magma in a conduit: Degassing process of Satsuma-Iwojima Volcano, Japan,” Geophys. Res. Lett., Vol.36, No.1, L01304, 2009.
  37. [37] H. K. M. Tanaka, T. Uchida, M. Tanaka, M. Takeo, J. Oikawa, T. Ohminato, Y. Aoki, E. Koyama, and H. Tsuji, “Detecting a mass change inside a volcano by cosmic-ray muon radiography (muography): First results from measurements at Asama volcano, Japan,” Geophys. Res. Lett., Vol.36, No.17, L17302, 2009.
  38. [38] R. D’Alessandro, F. Ambrosino, G. Baccani, L. Bonechi, M. Bongi, A. Caputo, R. Ciaranfi, L. Cimmino, V. Ciulli, M. D’Errico, F. Giudicepietro, S. Gonzi, G. Macedonio, V. Masone, B. Melon, N. Mori, P. Noli, M. Orazi, P. Passeggio, R. Peluso, G. Saracino, L. Scognamiglio, P. Strolin, E. Vertechi, and L. Viliani, “Volcanoes in Italy and the role of muon radiography,” Phil. Trans. R. Soc. A, Vol.377, No.2137, Article ID 20180050, 2018.
  39. [39] V. Tioukov, G. De Lellis, P. Strolin, L. Consiglio, A. Sheshukov, M. Orazi, R. Peluso, C. Bozza, C. De Sio, S. M. Stellacci, C. Sirignano, N. D’Ambrosio, S. Miyamoto, R. Nishiyama, and H. K. M. Tanaka, “Muography with nuclear emulsions – Stromboli and other projects,” Ann. of Geophys., Vol.60, No.1, S0111, 2017.
  40. [40] O. Catalano, M. Del Santo, T. Mineo, G. Cusumano, M. C. Maccarone, and G. Pareschi, “Volcanoes muon imaging using Cherenkov telescopes,” Nucl. Instrum. Meth. A, Vol.807, pp. 5-12, 2016.
  41. [41] D. Lo Presti, G. Gallo, D. L. Bonanno, G. Bonanno, D. G. Bongiovanni, D. Carbone, C. Ferlito, J. Immè, P. La Rocca, F. Longhitano, A. Messina, S. Reito, F. Riggi, G. Russo, and L. Zuccarello, “The MEV project: Design and testing of a new high-resolution telescope for muography of Etna Volcano,” Nucl. Instrum. Meth. A, Vol.904, pp. 195-201, 2018.
  42. [42] H. K. M. Tanaka, H. Taira, T. Uchida, M. Tanaka, M. Takeo, T. Ohminato, Y. Aoki, R. Nishiyama, D. Shoji, and H. Tsuiji, “Three-dimensional computational axial tomography scan of a volcano with cosmic ray muon radiography,” J. Geophys. Res. Solid Earth, Vol.115, No.B12, B12332, 2010.
  43. [43] S. Nagahara and S. Miyamoto, “Feasibility of three-dimensional density tomography using dozens of muon radiographies and filtered back projection for volcanos,” Geosci. Instrum. Method. Data Syst., No.7, pp. 307-316, 2018.
  44. [44] R. Nishiyama, Y. Tanaka, S. Okubo, H. Oshina, H. K. M. Tanaka, and T. Maekawa, “Integrated processing of muon radiography and gravity anomaly data toward the realization of high-resolution 3-D density structural analysis of volcanoes: Case study of Showa-Shinzan lava dome, Usu, Japan,” J. Geophys. Res. Solid Earth, Vol.119, No.1, pp. 699-710, 2014.
  45. [45] H. K. M.Tanaka, “Instant snapshot of the internal structure of Unzen lava dome, Japan with airborne muography,” Nature, Scientific Reports 6, Article No.39741, 2016.
  46. [46] K. Jourde, D. Gibert, J. Marteau, J. D. Bremond d’Ars, and J.-C. Komorowski, “Muon dynamic radiography of density changes induced by hydrothermal activity at the La Soufrière of Guadeloupe volcano,” Nature, Scientific Reports 6, Article No.33406, 2016.
  47. [47] Path-length simulator of Virtual Muography Institute, https://gum.muographers.org/ [accessed January 1, 2019]
  48. [48] Website of Geospatial Information Authority of Japan, http://www.gsi.go.jp/ [accessed January 1, 2019]
  49. [49] D. Varga, G. Nyitrai, G. Hamar, and L. Oláh, “High efficiency gaseous tracking detector for cosmic muon radiography,” Adv. High Energy Phys., Vol.2016, Article ID 1962317, 2016.
  50. [50] D. Varga, L. Oláh, G. Hamar, H. K. M. Tanaka, and T. Kusagaya, “Muographic Observation Instrument,” WO 2017/187308, A1, 2017.
  51. [51] L. Oláh, Sz. J. Balogh, Á. L. Gera, G. Hamar, G. Nyitrai, H. K. M. Tanaka, and D. Varga, “MWPC-based Muographic Observation System for remote monitoring of active volcanoes,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, doi:10.1016/j.nima.2018.11.004, 2018.
  52. [52] Webpage of MMOS user interface, https://mmos.muographers.org/ [accessed January 15, 2019].

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 19, 2024