JDR Vol.14 No.4 pp. 580-591
doi: 10.20965/jdr.2019.p0580


Significance of Electromagnetic Surveys at Active Volcanoes: Toward Evaluating the Imminence of Wet Eruptions

Takeshi Hashimoto*,†, Wataru Kanda* *, Yuichi Morita***, Midori Hayakawa* , Ryo Tanaka*, Hiroshi Aoyama*, and Makoto Uyeshima***

*Institute of Seismology and Volcanology, Faculty of Science, Hokkaido University
N10W8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan

Corresponding author

**Volcanic Fluid Research Center, School of Science, Tokyo Institute of Technology, Tokyo, Japan

***Earthquake Research Institute, The University of Tokyo, Tokyo, Japan

January 7, 2019
April 5, 2019
June 1, 2019
Kuttara volcano, magnetotellurics, wet eruptions, unrest phenomena

The detection capability of various anomalous phenomena preceding volcanic eruptions has considerably progressed as the geophysical monitoring networks have become denser and multi-disciplinary. However, current eruption forecasting techniques, from a practical perspective, still have much scope for improvement because they largely depend on empirical techniques. In the past decade, three-dimensional modeling based on the electromagnetic sounding methods such as magnetotellurics (MT) have become a practical choice, and its recent applications to active volcanic fields has revealed certain common features among volcanoes. Information about the resistivity structure, especially in ‘wet’ volcanic fields, is useful for the provisional screening of the eruption potential from the viewpoint of the subsurface structure, and, thus, may contribute to the evaluation of eruption imminence in a broad sense. In this study, for evaluation purposes, we present the roles and possible further applications of the subsurface resistivity structure studies by demonstrating the preliminary results and interpretations of an MT survey that we performed in the Kuttara Volcanic Group, northern Japan.

Cite this article as:
T. Hashimoto, W. Kanda, Y. Morita, M. Hayakawa, R. Tanaka, H. Aoyama, and M. Uyeshima, “Significance of Electromagnetic Surveys at Active Volcanoes: Toward Evaluating the Imminence of Wet Eruptions,” J. Disaster Res., Vol.14, No.4, pp. 580-591, 2019.
Data files:
  1. [1] T. Ui, M. Nakagawa, C. Inaba, M. Yoshimoto, and Geological Party, Joint Research Group for the Usu 2000 Eruption, “Sequence of the 2000 Eruption, Usu Volcano,” Bull. Volcanol. Soc. J., Vol.47, No.3, pp. 105-117, doi:10.18940/kazan.47.3_105, 2001 (in Japanese with English abstract).
  2. [2] M. Ukawa, E. Fujita, Y. Okada, and M. Kikuchi, “The 2000 Miyakejima eruption: Crustal Deformation and Earthquakes Observed by the NIED Miyakejima Observation Network,” Earth Planets Space, Vol.52, No.8, pp. xix-xxvi, doi:10.1186/BF03351659, 2000.
  3. [3] M. Iguchi, H. Yakiwara, T. Tameguri, M. Hendrasto, and J. Hirabayashi, “Mechanism of Explosive Eruption Revealed by Geophysical Observations at the Sakurajima, Suwanosejima and Semeru Volcanoes,” J. Volcanol. Geotherm. Res., Vol.178, pp. 1-9, doi:10.1016/j.jvolgeores.2007.10.010, 2008.
  4. [4] K. Mannen, Y. Yukutake, G. Kikugawa, M. Harada, K. Itadera, and J. Takenaka, “Chronology of the 2015 Eruption of Hakone Volcano, Japan: Geological Background, Mechanism of Volcanic Unrest and Disaster Mitigation Measures During the Crisis,” Earth Planets Space, Vol.70, Article No.68, doi:10.1186/s40623-018-0844-2, 2018.
  5. [5] K. Tsukamoto, K. Aizawa, K. Chiba, W. Kanda, M. Uyeshima, T. Koyama, M. Utsugi, K. Seki, and T. Kishita, “Three-dimensional Resistivity Structure of Iwo-yama Volcano, Kirishima Volcanic Complex, Japan: Relationship to Shallow Seismicity, Surface Uplift, and a Small Phreatic Eruption,” Geophys. Res. Lett., Vol.45, pp. 12821-12828, doi:10.1029/2018GL080202, 2018.
  6. [6] Y. Miyabuchi, Y. Iizuka, C. Harada, A. Yokoo, and T. Ohkura, “The September 14, 2015 Phreatomagmatic Eruption of Nakadake First Crater, Aso Volcano, Japan: Eruption Sequence Inferred from Ballistic, Pyroclastic Density Current and Fallout Deposits,” J. Volcanol. Geotherm. Res., Vol.351, pp. 41-56, doi:10.1016/j.jvolgeores.2017.12.009, 2018.
  7. [7] S. Nakada, M. Nagai, T. Kaneko, Y. Suzuki, and F. Maeno, “The Outline of the 2011 Eruption at Shinmoe-dake (Kirishima), Japan,” Earth Planets Space, Vol.65, Issue 6, pp. 475-488, doi:10.5047/eps.2013.03.016, 2013.
  8. [8] T. Oikawa, M. Yoshimoto, S. Nakada, F. Maeno, J. Komori, T. Shimano, Y. Takeshita, Y. Ishizuka, and Y. Ishimine, “Reconstruction of the 2014 Eruption Sequence of Ontake Volcano from Recorded Images and Interviews,” Earth Planets Space, Vol.68, Article No.79, doi:10.1186/s40623-016-0458-5, 2016.
  9. [9] N. Geshi, M. Iguchi, and H. Shinohara, “Phreatomagmatic Eruptions of 2014 and 2015 in Kuchinoerabujima Volcano Triggered by a Shallow Intrusion of Magma,” J. Nat. Disast. Sci., Vol.37, No.2, pp. 67-78, doi:10.2328/jnds.37.67, 2016.
  10. [10] A. Terada, “Kusatsu-Shirane Volcano as a Site of Phreatic Eruptions,” J. Geol. Soc. Japan, Vol.124, No.4, pp. 251-270, doi:10.5575/geosoc.2017.0060, 2018 (in Japanese with English abstract).
  11. [11] Regional Volcanic Observation and Warning Center, Sapporo Regional Headquarters, JMA, “Volcanic Activity of Tokachidake Volcano During the Last 10 Years (2006-2016),” Report of the Coordinating Committee for Prediction of Volcanic Eruptions, Vol.127, pp. 29-44, 2018 (in Japanese).
  12. [12] Y. Yoshida, M. Funakoshi, M. Nishida, K. Ohmi, A. Takagi, and S. Ando, “Crustal Deformation Observed by GPS Around Azuma Volcano,” Quarterly J. of Seismology, Vol.76, pp. 1-8, 2012 (in Japanese).
  13. [13] P. R. L. Browne and J. V. Lawless, “Characteristics of Hydrothermal Eruptions, With Examples from New Zealand and Elsewhere,” Earth-Science Rev., Vol.52, pp. 299-331, 2001.
  14. [14] L. Wilson, R. S. J. Sparks, and G. P. L. Walker, “Explosive Volcanic Eruptions: IV. The Control of Magma Properties and Conduit Geometry on Eruption Column Behaviour,” Geophys. J. R. Astron. Soc., Vol.63, pp. 117-148, 1980.
  15. [15] A. W. Woods and T. Koyaguchi, “Transitions Between Explosive and Effusive Eruptions of Silicic Magmas,” Nature, Vol.370, pp. 641-644, 1994.
  16. [16] O. Melnik and R. S. J. Sparks, “Nonlinear Dynamics of Lava Dome Extrusion,” Nature, Vol.402, pp. 37-41, 1999.
  17. [17] T. Kozono and T. Koyaguchi, “Effects of Gas Escape and Crystallization on the Complexity of Conduit Flow Dynamics During Lava Dome Eruptions,” J. Geophys. Res., Vol.117, B08204, 2012.
  18. [18] A. Revil, T. C. Johnson, and A. Finizola, “Three-dimensional resistivity tomography of Vulcan’s forge, Vulcano Island, southern Italy,” Geophys. Res. Lett., Vol.37, L15338, doi:10.1029/2010GL043983, 2010.
  19. [19] A. Portal, Y. Fargier, P. Labazuy, J.-F. Lénat, P. Boivin, and D. Miallier, “3D electrical imaging of the inner structure of a complex lava dome, Puy de Dôme volcano (French Massif Central, France),” J. Volcanol. Geotherm. Res., Vol.373, 97-107, doi:10.1016/j.jvogeores.2019.01.019, 2019.
  20. [20] Y. Goto and A. Johmori, “Controlled Source Audio-frequency Magnetotelluric (CSAMT) and Time Domain Electromagnetic (TDEM) Resistivity Measurements at Noboribetsu Geothermal Field, Kuttara Volcano, Hokkaido, Japan,” Bull. Volcanol. Soc. J., Vol.56, pp. 153-160, 2011.
  21. [21] Y. Goto and A. Johmori, “Resistivity Structure of the Hiyoriyama Cryptdome at Kuttara Volcano, Hokkaido, Japan,” Bull. Volcanol. Soc. J., Vol.58, pp. 365-376, 2013.
  22. [22] Y. Goto and A. Johmori, “Internal Structure of Kuttara Caldera, Hokkaido, Japan,” Bull. Volcanol. Soc. J., Vol.60, pp. 35-46, 2015.
  23. [23] M. Hayakawa, “Consideration of Hydrothermal System of Kuttara Volcano Seen from Three-dimensional Resistivity Structure,” Master thesis of Department of Natural History Sciences, Graduate School of Science, Hokkaido University, pp. 1-81, 2018.
  24. [24] K. Yamagata, “Tephrochronological Study on the Shikotsu and Kuttara Volcanoes in Southwestern Hokkaido, Japan,” J. Geogr, Vol.103, pp. 268-285, 1994 (in Japanese with English abstract).
  25. [25] M. Moriizumi, “The Growth History of the Kuttara Volcanic Group, Hokkaido, Japan,” Bull. Volcanol. Soc. J., Vol.43, pp. 95-111, 1998 (in Japanese with English abstract).
  26. [26] Y. Katsui, I. Yokoyama, H. Okada, T. Abiko, and H. Muto, “Kuttara (Hiyoriyama),” Hokkaido Disaster Management Council, pp. 1-99, 1988 (in Japanese).
  27. [27] Y. Goto, H. Sasaki, Y. Toriguchi, and A. Hatakeyama, “Historyof Phreatic Eruptions in the Noboribetsu Geothermal Field, Kuttara Volcano, Hokkaido, Japan,” Bull. Volcanol. Soc. J., Vol.58, pp. 461-472, 2013.
  28. [28] B. Boehrer, R. Fukuyama, and K. A. Chikita, “Geothermal Heat Flux into Deep Caldera Lakes Shikotsu, Kuttara, Tazawa and Towada,” Limnology, Vol.14, No.2, pp. 129-134, 2013.
  29. [29] Japan Meteorological Agency, “Kuttara,” National Catalogue of the Active Volcanoes in Japan, 4th Edition, pp. 1-11, 2013.
  30. [30] T. Fukutomi, K. Nakao, H. Miyoshi, and R. Tanoue, “Studies of Water Balance and Heat Budget at Oyunuma Hot Lake in Noboribetsu, Hokkaido,” Geophysical Bull. Hokkaido Univ., Vol.19, pp. 1-19, 1968.
  31. [31] Geospatial Information Authority of Japan, “Crustal Deformations around Kuttara Volcano,” Report of the Coordinating Committee for Prediction of Volcanic Eruptions, Vol.130, pp. 33-35, 2018.
  32. [32] A. D. Chave and D. J. Thomson, “Bounded Influence Magnetotelluric Response Function Estimation,” Geophys. J. Int., Vol.157, pp. 988-1006, 2004.
  33. [33] T. D. Gamble, W. M. Goubau, and J. Clarke, “Magnetotellurics With a Remote Magnetic Reference,” Geophysics, Vol.44, pp. 53-68, 1979.
  34. [34] G. D. Egbert and A. Kelbert, “Computational Recipes for Electromagnetic Inverse Problems,” Geophys. J. Int., Vol.189, pp. 251-267, 2012.
  35. [35] F. R. Schilling, G. M. Partzsch, H. Brasse, and G. Schwarz, “Partial Melting Below the Magmatic Arc in the Central Andes Deduced from Geoelectromagnetic Field Experiments and Laboratory Data,” Phys. Earth Planet. Int., Vol.103, pp. 17-31, doi:10.1016/S0031-9201(97)00011-3, 1997.
  36. [36] R. Yoshimura, Y. Ogawa, Y. Yukutake, W. Kanda, S. Komori, H. Hase, T. Goto, R. Honda, M. Harada, T. Yamazaki, M. Kamo, S. Kawasaki, T. Higa, T. Suzuki, Y. Yasuda, M. Tani, and Y. Usui, “Resistivity Characterisation of Hakone Volcano, Central Japan, by Three-dimensional Magnetotelluric Inversion,” Earth Planets Space, Vol.70, Article No.66, doi:10.1186/s40623-018-0848-y, 2018.
  37. [37] New Energy Development Organization (NEDO), “Noboribetsu Area,” Report of Geothermal Development Promotion Survey, pp. 1-845, 1991.
  38. [38] B. W. Christenson, A. G. Reyes, R. Young, A. Moebis, S. Sherburn, J. Cole-Baker, and K. Britten, “Cyclic Processes and Factors Leading to Phreatic Eruption Events: Insights from the 25 September 2007 Eruption Through Ruapehu Crater Lake, New Zealand,” J. Volcanol. Geotherm. Res., Vol.191, pp. 15-32, 2010.
  39. [39] W. Kanda, M. Utsugi, Y. Tanaka, T. Hashimoto, I. Fujii, T. Hasenaka, and N. Shigeno, “A Heating Process of Kuchi-erabu-jima Volcano, Japan, as Inferred from Geomagnetic Field Variations and Electrical Structure,” J. Volcanol. Geotherm. Res., Vol.189, pp. 158-171, doi:10.1016/j.jvolgeores.2009.11.002, 2010.
  40. [40] Nurhasan, Y. Ogawa, N. Ujihara, S. B. Tank, Y. Honkura, S. Onizawa, T. Mori, and M. Makino, “Two Electrical Conductors Beneath Kusatsu-Shirane Volcano, Japan, Imaged by Audiomagnetotellurics, and Their Implications for the Hydrothermal System,” Earth Planets Space, Vol.58, pp. 1053-1059, 2006.
  41. [41] K. Seki, W. Kanda, Y. Ogawa, T. Tanbo, T, Kobayashi, Y. Hino, and H. Hase, “Imaging the Hydrothermal System Beneath the Jigokudani Valley, Tateyama Volcano, Japan: Implications for Structures Controlling Repeated Phreatic Eruptions from an Audio-frequency Magnetotelluric Survey,” Earth, Planets and Space, Vol.67, Article No.6, doi:10.1186/s40623-014-0169-8, 2015.
  42. [42] G. J. Hill, H. M. Bibby, Y. Ogawa, E. L.Wallin, S. L. Bennie, T. G. Caldwell, H. Keys, E. A. Bertland, and W. Heise, “Structure of the Tongariro Volcanic system: Insights from magnetotelliric imaging,” Earth Planet. Sci. Lett., Vol.432, pp. 115-125, doi: 10.1016/j.epsl.2015.10.003, 2015.
  43. [43] K. Árnason, H. Eysteinsson, and G. P. Hersir, “Joint 1D inversion of TEM and MT data and 3D inversion of MT data in the Hengill area, SW Iceland,” Geothermics, Vol.39, pp. 13-34, doi:10.1016/j.geothermics.2010.01.002, 2010.
  44. [44] M. Todesco, A. P. Rinaldi, and M. Bonafede, “Modeling of Unrest Signals in Heterogeneous Hydrothermal Systems,” J. Geophys. Res.: Solid Earth, Vol.115, pp. 1-19, doi:10.1029/2010JB007474, 2010.
  45. [45] R. Tanaka, T. Hashimoto, N. Matsushima, and T. Ishido, “Permeability-control on Volcanic Hydrothermal System: Case Study for Mt. Tokachidake, Japan, Based on Numerical Simulation and Field Observation,” Earth Planets Space, Vol.69, Article No.39, doi:10.1186/s40623-017-0623-5, 2017.
  46. [46] R. Tanaka, T. Hashimoto, N. Matsushima, and T. Ishido, “Contention Between Supply of Hydrothermal Fluid and Conduit Obstruction: Inferences from Numerical Simulations,” Earth Planets Space, Vol.70, Article No.72, doi:10.1186/s40623-018-0840-6, 2018.
  47. [47] A. W. Hurst, H. M. Bibby, B. J. Scott, and M. J. McGuiness, “The Heat Source of Ruapehu Crater Lake; Deductions from the Energy and Mass Balances,” J. Volcanol. Geotherm. Res., Vol.46, pp. 1-20, 1991.
  48. [48] G. E. Archie, “The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics,” J. Petr. Tech., Vol.5, pp. 1-8, 1942.
  49. [49] P. W. J. Glover, “A Generalized Archie’s Law for n Phases,” Geophysics, Vol.75, pp. 247-265, doi:10.1190/1/3509781, 2010.
  50. [50] A. Pommier and E. Le-Trong, “SIGMELTS: A Web Portal for Electrical Conductivity Calculations in Geosciences,” Computers and Geosciences, Vol.37, No.9, pp. 1450-1459, 2011.
  51. [51] J. R. Peacock, M. T. Mangan, D. McPhee, and D. A. Ponce, “Imaging the Magmatic System of Mono Basin, California, with Magnetotellurics in Three Dimensions,” J. Geophys. Res.: Solid Earth, Vol.120, pp. 7273-7289, 2015.
  52. [52] M. Hata, N. Matsushima, S. Takakura, M. Utsugi, T. Hashimoto, and M. Uyeshima, “Three-Dimensional Electrical Resistivity Modeling to Elucidate the Crustal Magma Supply System Beneath Aso Caldera, Japan,” J. Geophys. Res.: Solid Earth, Vol.123, doi:10.1029/2018JB015951, 2018.
  53. [53] W. Siripunvaraporn and G. Egbert, “WSINV3DMT: Vertical Magnetic Field Transfer Function Inversion and Parallel Implementation,” Phys. Earth Planet. Inter., Vol.173, No.3-4, pp. 317-329, 2009.
  54. [54] A. Kelbert, N. Meqbel, G. D. Egbert, and K. Tandon, “ModEM: A Modular System for Inversion of Electromagnetic Geophysical Data,” Comp. Geosci., Vol.66, pp. 40-53, 2014.
  55. [55] Y. Usui, “3-D Inversion of Magnetotelluric Data Using Unstructured Tetrahedral Elements: Applicability to Data Affected by Topography,” Geophys. J. Int., Vol.202, pp. 828-849, 2015.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Jul. 12, 2019