single-dr.php

JDR Vol.14 No.1 pp. 51-60
(2019)
doi: 10.20965/jdr.2019.p0051

Paper:

Forecast of the Pyroclastic Volume by Precursory Seismicity of Merapi Volcano

Masato Iguchi*,†, Haruhisa Nakamichi*, Kuniaki Miyamoto*, Makoto Shimomura*, I Gusti Made Agung Nandaka**, Agus Budi-Santoso**, Sulistiyani**, and Nurnaning Aisyah**

*Sakurajima Volcano Research Center, Disaster Prevention Research Institute, Kyoto University
1722-19 Sakurajima-Yokoyama, Kagoshima-city, Kagoshima 891-1419, Japan

Corresponding author

**Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi, Yogyakarta, Indonesia

Received:
August 7, 2018
Accepted:
December 14, 2018
Published:
February 1, 2019
Keywords:
volcano-tectonic earthquake, multiphase earthquake, volcano explosivity index, potential volume, Merapi volcano
Abstract

We propose a method to evaluate the potential volume of eruptive material using the seismic energy of volcanic earthquakes prior to eruptions of Merapi volcano. For this analysis, we used well-documented eruptions of Merapi volcano with pyroclastic flows (1994, 1997, 1998, 2001, 2006, and 2010) and the rates and magnitudes of volcano-tectonic A-type, volcano-tectonic B-type, and multiphase earthquakes before each of the eruptions. Using the worldwide database presented by White and McCausland [1], we derived a log-linear formula that describes the upper limit of the potential volume of erupted material estimated from the cumulative seismic energy of distal volcano-tectonic earthquakes. The relationship between the volume of pyroclastic material and the cumulative seismic energy released in 1994, 1997, 1998, 2001, 2006, and 2010 at Merapi volcano is well-approximated by the empirical formula derived from worldwide data within an order of magnitude. It is possible to expand this to other volcanic eruptions with short (< 30 years) inter-eruptive intervals. The difference in the intruded and extruded volumes between intrusions and eruptions, and the selection of the time period for the cumulative energy calculation are problems that still need to be addressed.

Cite this article as:
M. Iguchi, H. Nakamichi, K. Miyamoto, M. Shimomura, I. Nandaka, A. Budi-Santoso, Sulistiyani, and N. Aisyah, “Forecast of the Pyroclastic Volume by Precursory Seismicity of Merapi Volcano,” J. Disaster Res., Vol.14, No.1, pp. 51-60, 2019.
Data files:
References
  1. [1] R. White and W. McCausland, “Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions,” J. Volcanol. Geotherm. Res., Vol.309, pp. 139-155, 2016.
  2. [2] S. D. Andreastuti, B. V. Alloway, and I. E. M. Smith, “A detailed tephrostratigraphic framework at Merapi Volcano, Central Java, Indonesia: implications for eruption predictions and hazard assessment,” J. Volcanol. Geotherm. Res., Vol.100, Issues 1-4, pp. 51-67, 2000.
  3. [3] C. G. Newhall et al., “10,000 Years of explosive eruptions of Merapi Volcano, Central Java: archaeological and modern implications,” J. Volcanol. Geotherm. Res., Vol.100, Issues 1-4, pp. 9-50, 2000.
  4. [4] S. Siswowidjoyo, I. Suryo, and I. Yokoyama, “Magma eruption rates of Merapi volcano, Central Java, Indonesia during one century (1890.1992),” Bull. Volcanol., Vol.57, No.2, pp. 111-116, 1995.
  5. [5] B. Voight, E. K. Constantine, S. Siswowidjoyo, and R. Torley, “Historical eruptions of Merapi volcano, central Java, Indonesia, 1768-1998,” J. Volcanol. Geotherm. Res., Vol.100, Issues 1-4, pp. 69-138, 2000.
  6. [6] A. Ratdomopurbo et al., “Overview of the 2006 eruption of Mt. Merapi,” J. Volcanol. Geotherm. Res., Vol.261, pp. 87-97, 2013.
  7. [7] Surono et al., “The 2010 explosive eruption of Java’s Merapi volcano – A ‘100-year’ event,” J. Volcanol. Geotherm. Res., Vol.241-242, pp. 121-135, 2012.
  8. [8] A. Budi-Santoso et al., “Analysis of the seismic activity associated with the 2010 eruption of Merapi Volcano, Java,” J. Volcanol. Geotherm. Res., Vol.261, pp. 153-170, 2013.
  9. [9] A. Ratdomopurbo and G. Poupinet, “An overview of the seismicity of Merapi volcano (Java, Indonesia), 1983-1994,” J. Volcanol. Geotherm. Res., Vol.100, Issues 1-4, pp. 193-214, 2000.
  10. [10] S. Yamashita and K. Miyamoto, “Model of pyroclastic flow and its numerical simulation. Sediment problems: Strategies for monitoring,” Prediction and Control (Proc. of the Yokohama Symposium, July 1993), IAHS Publ., Vol.217, pp. 67-74, 1993.
  11. [11] A. K. Patra et al., “Parallel adaptive numerical simulation of dry avalanches over natural terrain,” J. Volcanol. Geotherm. Res., Vol.139, Issues 1-2, pp. 1-21, 2005.
  12. [12] S. J. Charbonnier and R. Gertisser, “Numerical simulations of block-and-ash flows using the Titan2D flow model: examples from 2006 eruption of Merapi Volcano, Java, Indonesia,” Bull. Volcanol., Vol.71, No.8, pp. 953-959, 2009.
  13. [13] T. E. Ongaro, C. Widiwijanti, A. B. Clarke, B. Voight, and A. Neri, “Multiphase-flow numerical modeling of the 18 May 1980 lateral blast at Mount St. Helens, USA,” Geology, Vol.39, No.6, pp. 535-538, 2011.
  14. [14] H. L. Tanaka and K. Yamamoto, “Numerical simulation of volcanic plume dispersal from Usu volcano in Japan on 31 March 2000 using PUFF model,” Earth Planets and Space, Vol.54, No.7, pp. 743-752, 2002.
  15. [15] A. Costa, G. Macedonio, and A. Folch, “A three-dimensional Eulerian model for transport and deposition of volcanic ashes,” Earth Planet. Sci. Lett., Vol.241, No.3-4, pp. 634-647, 2006.
  16. [16] K. Ishihara, M. Iguchi, and K. Kamo, “Numerical simulation of lava flows on some volcanoes in Japan,” Lava flows and domes, IAVCEI Proc. in Volcanology 2, pp. 174-207, 1990.
  17. [17] S. Mossoux et al., “Q-LAVHA: A flexible GIS plugin to simulate lava flows,” Computers & Geosciences, Vol.97, pp. 98-109, 2016.
  18. [18] T. Minakami, T. Ishikawa, and K. Yagi, “The 1944 eruption of volcano Usu in Hokkaido, Japan,” Bulletin Volcanologique, Vol.11, pp. 45-157, 1951.
  19. [19] D. Hidayat et al., “Broadband seismic experiment at Merapi Volcano, Java, Indonesia: very-long-period pulses embedded in multiphase earthquakes,” J. Volcanol. Geotherm. Res., Vol.100, Issues 1-4, pp. 215-231, 2000.
  20. [20] J. A. Power, A. D. Jolly, R. A. Page, and S. R. McNutt, “Seismicity and Forecasting of the 1992 Eruptions of Crater Peak Vent, Mount Spurr Volcano, Alaska: An Overview,” The 1992 Eruptions of Crater Peak Vent, Mount Spurr Volcano, Alaska, pp. 149-160, 1995.
  21. [21] Global Volcanism Program, “Report on Spurr (United States),” Bulletin of the Global Volcanism Network, Vol.17, No.3, doi:10.5479/si.GVP.BGVN199203-313040, 1992.
  22. [22] P. Jousset, J. Pallister, and Surono, “The 2010 eruption of Merapi volcano,” J. Volcanol. Geotherm. Res., Vol.261, pp. 1-6, 2013.
  23. [23] N. Aisyah et al., “Combination of a pressure source and block movement for ground deformation analysis at Merapi volcano prior to the eruptions in 2006 and 2010,” J. Volcanol. Geotherm. Res., Vol.357, pp. 239-253, 2018.
  24. [24] M. Sawada et al., “Strong seismic motion associated with the 1986 eruption of Izu-Oshima volcano,” Bull. Volcanol. Soc. Japan, Vol.33, Special Issue the 1986 eruption of Izu-Oshima volcano, pp. S102-S112, 1988.
  25. [25] K. Sakaguchi et al., “The 1986 eruption and products of Izu-Oshima volcano, Japan,” Bull. Volcanol. Soc. Japan, Vol.33, Special Issue the 1986 eruption of Izu-Oshima volcano, pp. S20-S31, 1988.
  26. [26] F. Omori, “The Sakura-Jima eruptions and earthquakes, V,” Bull. Imp. Earthq. Inv. Comm., Vol.8, No.5, pp. 353-466, 1920.
  27. [27] F. Omori, “The Sakura-Jima eruptions and earthquakes, II,” Bull. Imp. Earthq. Inv. Comm., Vol.8, No.2, pp. 35-179, 1916.
  28. [28] T. Hurst, A. D. Jolly, and S. Sherburn, “Precursory characteristics of the seismicity before the 6 August 2012 eruption of Tongariro volcano, North Island, New Zealand,” J. Volcanol. Geotherm. Res., Vol.286, pp. 294-302, 2014.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Nov. 08, 2019