JDR Vol.14 No.1 pp. 40-50
doi: 10.20965/jdr.2019.p0040


Eruption Scenarios of Active Volcanoes in Indonesia

Setsuya Nakada*1,*2,†, Fukashi Maeno*2, Mitsuhiro Yoshimoto*3, Natsumi Hokanishi*2, Taketo Shimano*4, Akhmad Zaennudin*5, and Masato Iguchi*6

*1National Research Institute for Earth Science and Disaster Resilience
3-1 Tennoudai, Tsukuba 305-0006, Japan

Corresponding author

*2Earthquake Research Institute, The University of Tokyo, Tokyo, Japan

*3Mount Fuji Research Institute, Yamanashi Prefectural Government, Yamanashi, Japan

*4Graduate School of Environmental and Disaster Research, Tokoha University, Shizuoka, Japan

*5Center for Volcanology and Geological Hazard Mitigation, Bandung, Indonesia

*6Sakurajima Volcano Research Center, Disaster Prevention Research Institute, Kyoto University, Kagoshima, Japan

September 3, 2018
January 9, 2019
February 1, 2019
eruption sequence, event tree, volcanic hazard, magma discharge rate, SATREPS

Eruption scenarios were prepared as possible sequences in event trees for six active volcanoes in Indonesia, that are located near populated areas or have erupted in recent years (Galunggung, Guntur, Kelud, Merapi, Semeru, and Sinabung). The event trees prepared here show sequences of possible eruption phenomena without probabilities on branches and cover sequences experienced in historical and pre-historical eruptions based on archives and field research results. Changing magma discharge rates during eruption sequences were considered for the event tree of Merapi. This conceptual event tree can also be used as a short-term event tree in which forecasting the coming eruption became possible with geophysical and geochemical monitoring data. Eruption event trees prepared for selected time windows cannot illustrate all plausible hazards and risks associated with an eruption. Therefore, hazards and risks generated from an eruption should be considered in different domains from the event tree.

Cite this article as:
S. Nakada, F. Maeno, M. Yoshimoto, N. Hokanishi, T. Shimano, A. Zaennudin, and M. Iguchi, “Eruption Scenarios of Active Volcanoes in Indonesia,” J. Disaster Res., Vol.14, No.1, pp. 40-50, 2019.
Data files:
  1. [1] C. G. Newhall and R. P. Hoblitt, “Contrasting event trees for volcanic crises,” Bull. Volcanol., Vol.64, doi: 10.1007/s004450100173, 2002.
  2. [2] C. G. Newhall and J. S. Pallister, “Using multiple data sets to populate probabilistic volcanic event trees,” P. Papel et al. (eds.), Volcanic Hazards, Risks, and Disasters, pp. 203-232, doi: 10.1016/B978-0-12-396453-3.00008-3, 2015.
  3. [3] L. Sandri, J.-C. Thouret, R. Constantinescu, S. Biass, and R. Tonini, “Long-term multi-hazard assessment for El Misti volcano (Peru),” Bull. Volcanol., Vol.76, No.771, doi: 10.1007/s00445-013-0771-9, 2014.
  4. [4] H. W. Wright, J. S. Pallister, W. A. McCausland, J. P. Griswold, S. Andreastuti, A. Budianto, S. Primulayana, H. Gunawan, 2013 VDAP team, and CVGHM event tree team, “Construction of probabilistic event trees for eruption forecasting at Sinabung volcano, Indonesia 2013–14,” J. Volcanol. Geotherm. Res., doi: 10.1016/j.jvolgeores.2018.02.003, 2018.
  5. [5] J. S. Pallister, D. J. Schneider, J. P. Griswold, R. H. Keeler, W. C. Burton, C. Noyles, C. G. Newhall, and A. Ratdomopurbo, “Merapi 2010 eruption-chronology and extrusion rates monitored with satellite radar and used in eruption forecasting,” J. Volcanol. Geotherm. Res., Vol.261, pp. 144-152, 2013.
  6. [6] Surono, P. Jousset, J. Pallister, M. Boichu, M. F. Buongiorno, A. Budisantoso, F. Costa, S. Andreastuti, F. Prata, D. Schneider, L. Clarisse, H. Humaida, S. Sumarti, C. Bignami, J. Griswold, S. Carn, C. Oppenheimer, and F. Lavigne, “The 2010 explosive eruption of Java’s Merapi volcano – A ‘100-year’ event,” J. Volcanol. Geotherm. Res., Vol.241-242, pp. 121-135, doi: 10.1016/j.jvolgeores.2012.06.018, 2012.
  7. [7] A. Ratdomopurbo, F. Beauducel, J. Subandriyo, I. G. M. A. Nandaka, C. G. Newhall, Suharna, D. S. Ayudi, H. Suparwaka, and Sunarta, “Overview of the 2006 eruption of Mt. Merapi,” J. Volcanol. Geotherm. Res., Vol.261, pp. 87-97, doi/10.1016/j.jvolgeores.2013.03.019, 2013.
  8. [8] K. V. Cashman, “Volatile controls on magma ascent and eruption,” R. J. J. Sparks and C. J. Hawkesworth (eds.), The state of the planet Frontiers and challenges in geophysics, Vol.150, pp. 109-124, doi: 10.1029/150GM10, 2004.
  9. [9] T. Kozono, H. Ueda, T. Ozawa, T. Koyaguchi, E. Fujita, A. Tomiya, and Y. J. Suzuki, “Magma discharge variations during the 2011 eruptions of Shinmoe-dake volcano, Japan, revealed by geodetic and satellite observations,” Bull. Volcanol., Vol.75, doi: 10.1007/s00445-013-0695-4, 2013.
  10. [10] W. P. Aspinall, S. C. Loughlin, F. V. Michael, A. D. Miller, G. E. Norton, K. C. Rowley, R. S. J. Sparks, and S. R. Young, “The Montserrat Volcano Observatory: its evolution, organization, role and activities,” T. H. Druitt and B. P. Kokelaar (eds.), “The Eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999,” Geol. Soc. London, Mem., No.21, pp. 71-91, 2002.
  11. [11] M. Yoshimoto, S. Nakada, N. Hokanishi, M. Iguchi, T. Ohkura, M. Hendrasto, A. Zaennudin, A. Budianto, and O. Prambada, “Eruption history and future scenario of Sinabung Volcano, North Sumatra Indonesia,” Abstract of IAVCEI Scientific Assembly in July 2013 (Kagoshima, Japan), Poster 4W_4D-P14, 2013.
  12. [12] S. Nakada, “Eruption scenarios and probabilistic forecasting,” Bull. Volc. Soc. Japan, Vol.61, pp. 199-209, 2016 (in Japanese with English abstract).
  13. [13] M. Iguchi, Surono, T. Nishimura, M. Hendrasto, U. Rosadi, T. Okura, H. Triastuty, A. Basuki, A. Loeqman, S. Maryant, K. Ishinara, M. Yoshimoto, S. Nakada, and N. Hokanishi, “Methods for eruption prediction and hazard evaluation at Indonesian volcanoes,” J. Disaster Res., Vol.7, No.1, pp. 26-36, 2012.
  14. [14] M. Hendrasto, Surono, A. Budianto, Kristianto, H. Triastuty, N. Haerani, A. Basuki, Y. Suparman, S. Primulyana, O. Prambada, A. Loeqman, N. Indrastuti, A. S. Andreas, U. Rosadi, S. Adi, M. Iguchi, T. Ohkura, S. Nakada, and M. Yoshimoto, “Evaluation of volcanic activity at Sinabung Volcano, after more than 400 years of quiet,” J. Disaster Res., Vol.7, No.1, pp. 37-44, 2012.
  15. [15] I. S. Sutawidjaja, O. Prambada, and D. A. Siregar, “The August 2010 phreatic eruption of Mount Sinabung, North Sumatra,” Indian J. Geol., Vol.8, pp. 55-61, 2013.
  16. [16] O. Prambada, A. Zaennuddin, Iryanto, I. Santosa, S. Nakada, and M. Yoshimoto, “Geologicmap of Sinabung Volcano, North Sumatra Province (1:25,000). Center for Volcanology and Geological Hazard Mitigation,” Geological Agency, 2011.
  17. [17] S. Nakada, A. Zaennudin, M. Yoshimoto, F. Maeno, Y. Suzuki, N. Hokanishi, H. Sasaki, M. Masato, T. Ohkura, H. Gunawan, and H. Triastuty, “Growth process of the lava dome/flow complex at Sinabung Volcano during 2013–2016,” J. Volcanol. Geotherm. Res., doi: 10.1016/j.jvolgeores.2017.06.012, 2018 (in press).
  18. [18] H. Gunawan, Surono, A. Budianto, Kristianto, O. Prambada, W. McCausland, J. Pallister, and M. Iguchi, “Overview of the eruptions of Sinabung Volcano, 2010 and 2013-present and details of the 2013 phreatomagmatic phase,” J. Volcanol. Geotherm. Res., doi: 10.1016/j.jvolgeores.2017.08.005, 2018 (in press).
  19. [19] S. Nakada, H. Shimizu, and K. Ohta, “Overview of the 1990–1995 eruption at Unzen Volcano,” J. Volcanol. Geotherm. Res., Vol.89, pp. 1-22, 1999.
  20. [20] S. Wikartadipura, A. D. Sumpena, A. Djuhara, M. S. Santoso, and Phillips, “Volcanic hazard map of Guntur volcano, West Java (1:50,000),” Volc. Surv. Indonesia (present CVGHM), 1993.
  21. [21] M. Surumayadi, M. N. Kartadinata, A. Budianto, and Y. Sasongko, “Geological map of Guntur volcano, West Java (25,000:1),” Volcanological Suvey of Indonesia (present CVGHM), 1998.
  22. [22] C. G. Newhall and S. Self, “The Volcanic Explosivity Indes (VEI): an estimate of explosive magnitude for histrorical volcanism,” J. Geophys. Res., Vol.87, No.C2, pp. 1231-1238, 1982.
  23. [23] N. Sadikin, M. Iguchi, G. Suamtola, and M. Hendrasto, “Seismic activity of volcano-tectonic earthquakes at Guntur volcano, West Java, Indonesia during the period from 1991 to 2005,” Indonesian J. Physics, Vol.18, pp. 21-28, 2007.
  24. [24] H. Juwarna, A. D. Wirakusumah, D. Soetoyo, and S. Bronto, “Geological map of Galunggung volcano, west-Java (10,000:1),” Volcan. Surv. Indonesia (present CVGHM), 1986.
  25. [25] S. Bronto, “Volcanic geology of Galunggung, West Java, Indonesia,” Ph.D. thesis, Coll. Sci., Univ. Canterbury,, 1989.
  26. [26] A. Sudradjat and R. Tilling, “Volcanic hazards in Indonesia: the 1982-83 eruption of Galunggung,” Episodes Vol.7, No.2, pp. 13-19, 1984.
  27. [27] A. Gourgaud, G. Camus, M. C. Gerbe, J. M. Morel, A. Sudradjat, and P. M. Vincent, “The 1982–83 Eruption of Galunggung (Indonesia): A Case Study of Volcanic Hazards with Particular Relevance to Air Navigation,” J. H. Latter (ed.), Volcanic Hazards, IAVCEI Proc. in Volcanology, Vol.1, pp. 151-162, Springer, Berlin, Heidelberg, doi: 10.1007/978-3-642-73759-6_9, 1989.
  28. [28] A. Zaennudin, I. N. Dana, and D. Wahyudin, “Geologic map of Kelud volcano, East Java (1:50,000),” Volc. Surv. Indonesia (present CVGHM), 1992.
  29. [29] F. Maeno, S. Nakada, M. Yoshimoto, T. Shimano, N. Hokanishi, A. Zaennudin, and M. Iguchi, “Eruption pattern and a long-term magma discharge rate over the past 100 years at Kelud volcano, Indonesia,” J. Disaster Res., Vol.14, No.1, 2019.
  30. [30] A. Jeffery, R. Gertisser, V. R. Troll, E. M. Jolis, B. Dahren, C. Harris, A. C. Tindle, K. Preece, B. O’Driscoll, H. Humaida, and J. P. Chadwick, “The pre-eruptive magma plumbing system of the 2007-2008 dome-forming eruption of Kelut volcano, East Java, Indonesia,” Contrib. Mineral. Petrol., Vol.166, pp. 275-308, doi: 10.1007/s00410-013-0875-4, 2013.
  31. [31] F. Maeno, S. Nakada, T. Yoshimoto, T. Shimano, N. Hokanishi, A. Zaennudin, and M. Iguchi, “A sequence of a plinian eruption preceded by dome destruction at Kelud volcano, Indonesia, on February 13, 2014, revealed from tephra fallout and pyroclastic density current deposits,” J. Volcanol. Geotherm. Res., doi: 10.1016/j.jvolgeores.2017.03.002, 2018 (in press).
  32. [32] S. Siswowidjoyo, U. Sudarsono, and A. D. Wirakusumah, “The threat of hazards in the Semeru volcano region in East Java, Indonesia,” J. Asian Earth Sci., Vol.15, pp. 185-194, 1997.
  33. [33] J.-C. Thouret, L. F. Lavigne, H. Suwa, B. Sukatja, and Surono, “Volcanic hazards at Mount Semeru, East Java (Indonesia), with emphasis on lahars,” Bull. Volcanol., Vol.70, pp. 221-244, 2007.
  34. [34] F. Maeno, S. Nakada, T. Yoshimoto, T. Shimano, A. Zaennudin, and O. Prambada, “Eruption history and event tree of Semeru volcano, Indonesia,” Abstract, Annual Meeting of Japan Geoscience Union, Chiba, on 21 May 2018, SVC41-06, [accessed January 24, 2019]
  35. [35] C. G. Newhall, S. Bronto, B. Alloway, N. G. Banks, I. Bahar, M. A. Del Marmol, R. D. Hadisantono, R. T. Holcomb, J. McGeehin, J. N. Miksic, M. Rubin, S. D. Sayudi, R. Sukhyar, S. Andreastuti, R. I. Tilling, R. Torley, D. Trimble, and A. D. Wirakusumah, “10,000 years of explosive eruptions of Merapi volcano, central Java: archaeological and modern implications,” J. Volcanol. Geotherm. Res., Vol.100, pp. 9-50, 2000.
  36. [36] B. Voight, E. K. Constantine, S. Siswowidjoyo, and R. Torley, “Historical eruptions of Merapi volcano, central Java, Indonesia, 1768–1998,” J. Volcanol. Geotherm. Res., Vol.100, pp. 69-138, 2000.
  37. [37] S. Jenkins, J. C. Komorowski, P. J. Baxter, R. Spence, A. Picquot, F. Lavigne, and Surono, “The Merapi 2010 eruption: An interdisciplinary impact assessment methodology for studying pyroclastic density current dynamics,” J. Volcanol. Geotherm. Res., Vol.261, pp. 316-329, doi: 10.1016/j.jvolgeores.2013.02.012, 2013.
  38. [38] Global Volcanism Program (GVN), “Report on Merapi (Indonesia),” R. Wunderman (ed.), Bulletin of the Global Volcanism Network, Vol.36, No.1, Smithsonian Institution, 2011, [accessed on July 31, 2018]
  39. [39] H. Nakamichi, M. Iguchi, H. Triastuty, M. Hendrasto, and I. Mulyana, “Differences of precursory seismic energy release for the 2007 effusive dome-forming and 2014 Plinian eruptions at Kelud volcano, Indonesia,” J. Volcanol. Geotherm. Res., doi: 10.1016/j.jvolgeores.2017.08.004, (in press).
  40. [40] W. Marzocci, L. Sandri, P. Gasparini, C. Newhall, and E. Boschi, “Quantifying probabilities of volcanic events: The example of volcanic hazard at Mount Vesuvius,” J. Geophys. Res., Vol.109, No.B11, doi: 10.1029/2004JB003155, 2004.
  41. [41] M. Iguchi, “Method for real-time evaluation of discharge rate of volcanic ash – case study on intermittent eruptions at the Sakurajima volcano, Japan –,” J. Disaster Res., Vol.11, No.1, pp. 4-14, doi: 10.20965/jdr.2016.p0004, 2016.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Feb. 22, 2019