JDR Vol.13 No.3 pp. 440-452
doi: 10.20965/jdr.2018.p0440


Real-Time GNSS Analysis System REGARD: An Overview and Recent Results

Satoshi Kawamoto*1,†, Naofumi Takamatsu*1, Satoshi Abe*1, Kohei Miyagawa*1, Yusaku Ohta*2, Masaru Todoriki*3, and Takuya Nishimura*4

*1Geospatial Information Authority of Japan
1 Kitasato, Tsukuba 305-0811, Japan

Corresponding author

*2Research Center for Prediction of Earthquakes and Volcanic Eruptions, Graduate School of Science, Tohoku University, Sendai, Japan

*3Fujitsu Laboratories Ltd., Kawasaki, Japan

*4Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan

October 31, 2017
January 29, 2018
June 1, 2018
GNSS, real-time GNSS analysis, earthquake modeling, rapid finite-fault model, GEONET

A new real-time Global Navigation Satellite System (GNSS) analysis system named REGARD has been launched to provide finite-fault models for large earthquakes with magnitudes =8 in real time. The finite-fault estimates using GNSS positioning are free from saturation problems and are very robust for modeling large earthquakes. The REGARD system processes ∼1,200 stations of GEONET, and event detection and finite-fault model inversion routines are implemented. Tests for the case of the 2011 Tohoku earthquake (Mw9.0) and a simulated Nankai Trough earthquake (Mw8.7) show that the REGARD system can provide reliable finite-fault models for large earthquakes. Furthermore, operational real-time results for the 2016 Kumamoto earthquake (Mj7.3) demonstrated the capability of this system to model inland earthquakes. These results imply the possibility of improving tsunami simulations and/or hazard information using rapid finite-fault models. Efforts to integrate real-time GNSS with current warning systems are currently being implemented around the world, and the REGARD system will join these systems in the near future.

Cite this article as:
S. Kawamoto, N. Takamatsu, S. Abe, K. Miyagawa, Y. Ohta, M. Todoriki, and T. Nishimura, “Real-Time GNSS Analysis System REGARD: An Overview and Recent Results,” J. Disaster Res., Vol.13 No.3, pp. 440-452, 2018.
Data files:
  1. [1] B. W. Crowell, Y. Bock, and M. B. Squibb, “Demonstration of earthquake early warning using total displacement waveforms from real-time GPS networks,” Seismol. Res. Lett., Vol.80, No.5, pp. 772-782, 2009.
  2. [2] P. Bormann, R. Liu, Z. Xu, K. Ren, L. Zhang, and S. Wendt, “First application of the new IASPEI teleseismic magnitude standards to data of the China national seismographic network,” Bulletin of the Seismological Society of America, Vol.99, No.3, pp. 1868-1891, 2009.
  3. [3] M. Hoshiba, K. Iwakiri, N. Hayashimoto, T. Shimoyama, K. Hirano, Y. Yamada, Y. Ishigaki, and H. Kikuta, “Outline of the 2011 Off the Pacific coast of Tohoku Earthquake (Mw9.0) – Earthquake Early Warning and observed seismic intensity –,” Earth Planets Space, Vol.63, Issue 7, pp. 547-551, 2011.
  4. [4] T. Ozaki, “Outline of the 2011 off the Pacific coast of Tohoku Earthquake (Mw9.0),” Earth Planets Space, Vol.63, Issue 7, pp. 827-830, 2011.
  5. [5] G. Blewitt, C. Kreemer, W. C. Hammond, H. P. Plag, S. Stein, and E. Okal, “Rapid determination of earthquake magnitude using GPS for tsunami warning systems,” Geophys. Res. Lett., Vol.33, Issue 11, p. L11309, 2006.
  6. [6] G. Blewitt, W. C. Hammond, C. Kreemer, H. P. Plag, S. Stein, and E. Okal, “GPS for real-time earthquake source determination and tsunami warning systems,” J. of Geodesy, Vol.83, Issue 3-4, pp. 335-343, 2009.
  7. [7] Y. Ohta, T. Kobayashi, H. Tsushima, S. Miura, R. Hino, T. Takasu, H. Fujimoto, T. Iinuma, K. Tachibana, T. Demachi, T. Sato, M. Ohzono, and N. Umino, “Quasi real-time fault model estimation for near-field tsunami forecasting based on RTK-GPS analysis: Application to the 2011 Tohoku-Oki earthquake (Mw 9.0),” J. of Geophys. Res., Vol.117, Issue B2, B02311, 2012.
  8. [8] H. Tsushima and Y. Ohta, “Review on Near-Field Tsunami Forecasting from Offshore Tsunami Data and Onshore GNSS Data for Tsunami Early Warning,” J. of Disaster Res., Vol.9, No.3, 2014.
  9. [9] S. V. Sobolev, A. Y. Babeyko, R. Wang, A. Hoechner, R. Galas, M. Rothacher, D. V. Sein, J. Schröter, J. Lauterjung, and C. Subarya, “Tsunami early warning using GPS-Shield arrays,” J. of Geophys. Res.: Solid Earth, Vol.112, Issue B8, 2007.
  10. [10] T. J. Wright, N. Houlié, M. Hildyard, and T. Iwabuchi, “Real-time, reliable magnitudes for large earthquakes from 1 Hz GPS precise point positioning: The 2011 Tohoku-Oki (Japan) earthquake,” Geophys. Res. Lett., Vol.39, Issue 12, p. L12302, 2012.
  11. [11] S. Colombelli, R. M. Allen, and A. Zollo, “Application of real-time GPS to earthquake early warning in subduction and strike-slip environments,” J. of Geophys. Res.: Solid Earth, Vol.118, Issue 7, pp. 3448-3461, 2013.
  12. [12] Y. Ohta, T. Kobayashi, R. Hino, T. Demachi, and S. Miura, “Rapid coseismic fault determination of consecutive large interplate earthquakes: The 2011 Tohoku-Oki sequence,” Int. Association of Geodesy Symposia 2015, Springer, doi:10.1007/1345_2015_109, 2015.
  13. [13] D. Melgar, Y. Bock, and B. W. Crowell, “Real-time centroid moment tensor determination for large earthquakes from local and regional displacement records,” Geophys. J. Int., Vol.188, No.2, pp. 703-718, 2012.
  14. [14] D. Melgar, B. W. Crowell, Y. Bock, and J. S. Haase, “Rapid modeling of the 2011 Mw 9.0 Tohoku-oki earthquake with seismogeodesy,” Geophys. Res. Lett., Vol.40, Issue 12, pp. 2963-2968, doi:10.1002/grl.50590, 2013.
  15. [15] D. Melgar and Y. Bock, “Near-field tsunami models with rapid earthquake source inversions from land- and ocean-based observations: The potential for forecast and warning,” J. of Geophys. Res.: Solid Earth, Vol.118, Issue 11, pp. 5939-5955, 2013.
  16. [16] D. Melgar, J. Geng, B. W. Crowell, J. S. Haase, Y. Bock, W. C. Hammond, and R. M. Allen, “Seismogeodesy of the 2014 Mw 6.1 Napa earthquake, California: rapid response and modeling of fast rupture on a dipping strike-slip fault,” J. of Geophys. Res.: Solid Earth, Vol.120, Issue 7, pp. 5013-5033, doi:10.1002/2015JB011921, 2015.
  17. [17] D. Melgar, R. M. Allen, S. Riquelme, J. Geng, F. Bravo, J. C. Baez, H. Parra, S. Barrientos, P. Fang, Y. Bock, M. Bevis, D. J. Caccamise II, C. Vigny, M. Moreno, and R. Smalley Jr., “Local tsunami warnings: Perspectives from recent large events,” Geophys. Res. Lett., Vol.43, Issue 3, pp. 1109-1117, doi:10.1002/2015GL067100, 2016.
  18. [18] S. E. Minson, J. R. Murray, J. O. Langbein, and J. S. Gomberg, “Realtime inversions for finite fault slipmodels and rupture geometry based on high-rate GPS data,” J. of Geophys. Res., Vol.119, Issue 4, pp. 3201-3231, doi:10.1002/2013JB010622, 2014.
  19. [19] S. Kawamoto, K. Miyagawa, T. Yahagi, M. Todoriki, T. Nishimura, Y. Ohta, R. Hino, and S. Miura, “Development and Assessment of Real-Time Fault Model Estimation Routines in the GEONET Real-Time Processing System,” Int. Association of Geodesy Symposia 2015, Springer, doi:10.1007/1345_2015_49, 2015.
  20. [20] S. Kawamoto, Y. Ohta, Y. Hiyama, M. Todoriki, T. Nishimura, T. Furuya, Y. Sato, T. Yahagi, and K. Miyagawa, “REGARD: A new GNSS-based real-time finite fault modeling system for GEONET,” J. of Geophys. Res.: Solid Earth, Vol.122, Issue 2, pp. 1324-1349, doi:10.1002/2016JB013485, 2017.
  21. [21] B. W. Crowell, D. A. Schmidt, P. Bodin, J. E. Vidale, J. Gomberg, J. R. Hartog, V. C. Kress, T. I. Melbourne, V. M. Santillan, S. E. Minson, and D. G. Jamison, “Demonstration of the Cascadia G-FAST geodetic earthquake early warning system for the Nisqually, Washington earthquake,” Seismol. Res. Lett., Vol.87, No.4, pp. 930-943, doi: 10.1785/0220150255, 2016.
  22. [22] R. Grapenthin, I. A. Johanson, and R. M. Allen, “Operational realtime GPS-enhanced earthquake early warning,” J. of Geophys. Res.: Solid Earth, Vol.119, Issue 10, pp. 7944-7965, 2014.
  23. [23] C. J. Ruhl, D. Melgar, R. Grapenthin, and R. M. Allen, “The value of real-time GNSS to earthquake early warning,” Geophys. Res. Lett., Vol.44, Issue 16, pp. 8311-8319, doi:10.1002/2017GL074502, 2017.
  24. [24] S. Kawamoto, Y. Hiyama, Y. Ohta, and T. Nishimura, “First result from the GEONET real-time analysis system (REGARD): the case of the 2016 Kumamoto earthquakes,” Earth, Planets and Space, Vol.68, Issue 1, doi:10.1186/s40623-016-0564-4, 2016.
  25. [25] R. Grapenthin, I. Johanson, and R. M. Allen, “The 2014 Mw 6.0 Napa earthquake, California: Observations from real-time GPS-enhanced earthquake early warning,” Geophys. Res. Lett., Vol.41, Issue 23, pp. 8269-8276, 2014.
  26. [26] A. Yamagiwa, Y. Hatanaka, T. Yutsudo, and B. Miyahara, “Real-time capability of GEONET system and its application to crust monitoring,” Bulletin of the Geographical Survey Institute, Vol.53, pp. 27-33, 2006.
  27. [27] T. Takasu, “RTKLIB: An Open Source Program Package for GNSS Positioning,” [accessed October 23, 2017]
  28. [28] L. Simon, B. Gerhard, S. Stefan, D. Rolf, and J. Adrian, “CODE’s new ultra-rapid orbit and ERP products for the IGS,” GPS Solutions, Vol.20, No.2, pp. 239-250, 2016.
  29. [29] S. Ide, A. Baltay, and G. C. Beroza, “Shallow dynamic overshoot and energetic deep rupture in the 2011 Mw9.0 Tohoku-Oki earthquake,” Science, Vol.332, No.6036, pp. 1426-1429, 2011.
  30. [30] Y. Okada, “Internal deformation due to shear and tensile faults in a half-space,” Bulletin of the Seismological Society of America, Vol.82, No.2, pp. 1018-1040, 1992.
  31. [31] M. Matsu’ura and Y. Hasegawa, “A maximum likelihood approach to nonlinear inversion under constraints,” Phys. of Earth and Planet. Interiors, Vol.47, pp. 179-187, 1987.
  32. [32] T. Utsu, “Jishingaku Third Edition,” Kyoritsu Shuppan, 2001 (in Japanese).
  33. [33] B. J. Meade, “Algorithms for the calculation of exact displacements, strains, and stresses for triangular dislocation elements in a uniform elastic half space,” Computers and Geosciences, Vol.33, No.8, pp. 1064-1075, 2007.
  34. [34] Cabinet Office, Government of Japan, “Nankai Trough earthquake damage estimation (2nd report),” [accessed Jan 15, 2018] (in Japanese)
  35. [35] N. Mori, T. Takahashi, T. Yasuda, and H. Yanagisawa, “Survey of 2011 Tohoku earthquake tsunami inundation and run-up,” Geophys. Res. Lett., Vol.38, Issue 7, L00G14, doi:10.1029/2011GL049210, 2011.
  36. [36] K. Ishibashi, “Status of historical seismology in Japan,” Annals of Geophysics, Vol.47, No.2-3, 2004.
  37. [37] M. Hyodo, T. Hori, and Y. Kaneda, “A possible scenario for earlier occurrence of the next Nankai earthquake due to triggering by an earthquake at Hyuga-nada, off southwest Japan,” Earth, Planets and Space, Vol.68, Issue 1, 2016.
  38. [38] T. Furumura, K. Imai, and T. Maeda, “A revised tsunami source model for the 1707 Hoei earthquake and simulation of tsunami inundation of Ryujin Lake, Kyushu, Japan,” J. of Geophys. Res.: Solid Earth, Vol.116, Issue B2, 2011.
  39. [39] M. Todoriki, T. Furumura, and T. Maeda, “3D FDM simulation of seismic wave propagation for Nankai Trough earthquake: Effects of topography and seawater,” AGU Fall Meeting, 9–13 December, San Francisco, USA, 2013.
  40. [40] T. Nishimura, H. Munekane, and H. Yarai, “The 2011 off the Pacific coast of Tohoku Earthquake and its aftershocks observed by GEONET,” Earth, Planets and Space, Vol.63, Issue 7, pp. 631-636, 2011.
  41. [41] S. Ozawa, T. Nishimura, H. Suito, T. Kobayashi, M. Tobita, and T. Imakiire, “Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake,” Nature, Vol.475, No.7356, pp. 373-376, 2011.
  42. [42] S. Ozawa, T. Nishimura, H. Munekane, H. Suito, T. Kobayashi, M. Tobita, and T. Imakiire, “Preceding, coseismic, and postseismic slips of the 2011 Tohoku earthquake, Japan,” J. of Geophys. Res., Vol.117, Issue B7, B07404, 2012.
  43. [43] M. Simons, S. E. Minson, A. Sladen, F. Ortega, J. Jiang, S. E. Owen, L. Meng, J. P. Ampuero, S. Wei, R. Chu, D. Helmberger, H. Kanamori, E. Hetland, A. W. Moore, and F. H. Webb, “The 2011Magnitude 9.0 Tohoku-Oki Earthquake: Mosaicking the Megathrust from Seconds to Centuries,” Science, Vol.332, No.6036, pp. 1421-1425, 2011.
  44. [44] T. Iinuma, R. Hino, M. Kido, D. Inazu, Y. Osada, Y. Ito, M. Ohzono, H. Tsushima, S. Suzuki, H. Fujimoto, and S. Miura, “Coseismic slip distribution of the 2011 off the Pacific Coast of Tohoku Earthquake (M9.0) refined by means of seafloor geodetic data,” J. of Geophys. Res., Vol.117, Issue B7, B07409, doi:10.1029/2012JB009186, 2012.
  45. [45] Cabinet Office, Government of Japan, “Damage situation associated with the earthquake in the Kumamoto region (as of April 23, 2017),” 39.pdf [Accessed October 23, 2017] (in Japanese)
  46. [46] Y. Yagi, R. Okuwaki, B. Enescu, A. Kasahara, A. Miyakawa, and M. Otsubo, “Rupture process of the 2016 Kumamoto earthquake in relation to the thermal structure around Aso volcano,” Earth, Planets and Space, Vol.68, Issue 1, doi:, 2016.
  47. [47] Headquarters for Earthquake Research Promotion, “Evaluation of the 2016 Kumamoto Earthquakes,” [accessed October 23, 2017]
  48. [48] T. Kobayashi, H. Yarai, S. Kawamoto, Y. Morishita, S. Fujiwara, and Y. Hiyama, “Crustal deformation and fault models of the 2016 Kumamoto earthquake sequence: Foreshocks and main shock,” submitted to Int. Association of Geodesy Symposia, 2017.
  49. [49] H. Nakagawa, T. Toyofuku, K. Kotani, B. Miyahara, C. Iwashita, S. Kawamoto, Y. Hatanaka, H. Munekane, M. Ishimoto, T. Yutsudo, N. Ishikura, and Y. Sugawara, “Development and Validation of GEONET New Analysis Strategy (Version 4),” J. of the GSI, 118, pp. 1-8, 2009 (in Japanese).
  50. [50] Y. Bock and The READI Working Group, “Real-time GNSS for natural hazards: Early warning and monitoring systems,” IGS Workshop 2014, 2014.
  51. [51] International Union of Geodesy and Geophysics, “The International Union of Geodesy and Geophysics General Assembly Resolutions 2015,” [accessed October 23, 2017]
  52. [52] P. Wessel and W. H. F. Smith, “New, improved version of generic mapping tools released,” Eos Trans. AGU, Vol.79, No.47, p. 579, 1998.
  53. [53] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing In Science and Engineering, Vol.9, No.3, pp. 90-95, 2007.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 19, 2024