JDR Vol.13 No.3 pp. 433-439
doi: 10.20965/jdr.2018.p0433


A GNSS Kinematic Analysis System for Japanese GEONET Stations

Hiroshi Munekane

Geospatial Information Authority of Japan
1 Kitasato, Tsukuba, Ibaraki 305-0811, Japan

Corresponding author

October 25, 2017
January 29, 2018
June 1, 2018
precise point positioning, kinematic GNSS, GEONET

Currently, the Geospatial Information Authority of Japan routinely operates the GNSS analysis system to produce coordinate solutions using a GNSS station network called GEONET. The sampling rate of these coordinate solutions is 1 day, or 3 hours at the highest. To augment the system to produce coordinate solutions with higher temporal resolution, a GNSS analysis system to produce kinematic coordinate solutions using the GEONET stations has been developed. This analysis system adopts the precise point positioning strategy to make the system robust and lightweight. In fact, the system is so lightweight that it can be operated with two personal computers. The system produces three types of coordinate solutions with intervals of 30 s, depending on their latency. Each coordinate solution has a quality represented by a typical coordinate repeatability of 1 cm in horizontal components. The system has been successfully utilized in constructing a fault model of the 2016 Central Tottori Earthquake. In the future, the system will be updated to host capacities for 1) producing post-processing 1 s coordinate solutions and 2) producing real-time 1 s coordinate solutions.

Cite this article as:
H. Munekane, “A GNSS Kinematic Analysis System for Japanese GEONET Stations,” J. Disaster Res., Vol.13 No.3, pp. 433-439, 2018.
Data files:
  1. [1] T. Kobayashi, “Earthquake rupture properties of the 2016 Kumamoto earthquake foreshocks (Mj 6.5 and Mj 6.4) revealed by conventional and multiple-aperture InSAR,” Earth Planet. Space, Vol.69, doi:10.1186/s40623-016-0594-y, 2017.
  2. [2] M. Irwan, F. Kimata, N. Fujii, S. Nakao, H. Watanabe, S. Sakai, M. Ukawa, E. Fujita, and K. Kawai, “Rapid ground deformation of the Miyakejima volcano on 26–27 June 2000 detected by kinematic GPS analysis,” Earth Planets Space, Vol.55, pp. e13-e16, 2003.
  3. [3] J. F. Zumberge, M. B. Heflin, D. C. Jefferson, M. M. Watkins, and F. H. Webb, “Precise point positioning for the efficient and robust analysis of GPS data from large networks,” J. Geophys. Res., Vol.102, pp. 5005-5017, 1997.
  4. [4] M. Ge, G. Gendt, M. Rothacher, C. Shi, and J. Liu, “Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations,” J. Geod, Vol.82, pp. 389-399, 2008.
  5. [5] W. Bertiger, S. D. Desai, B. Haines, N. Harvey, A. W. Moore, S. Owen, and J. P. Weiss, “Single receiver phase ambiguity resolution with GPS data,” J. Geod, Vol.84, pp. 327-337, 2010.
  6. [6] T. Takasu, “Development of multi-GNSS orbit and clock determination software MADOCA,” The 5th Asia Oceania Regional Workshop on GNSS, December 1–3, Hanoi, Vietnum, 2013.
  7. [7] RTKLIB: An open software program package for GNSS positioning, [accessed October 11, 2017]
  8. [8] K. Choi, A. Bilich, K. M. Larson, and P. Axelrad, “Modified sidereal filtering: Implications for high-rate GPS positioning,” Geophys. Res. Lett., 31, L22608, 2004.
  9. [9] H. Munekane and J. Boehm, “Numerical simulation of troposphere-induced errors in GPS-derived geodetic time series over Japan,” J. Geod, Vol.84, pp. 405-417, 2010.
  10. [10] The Headquarters for Earthquake Research Promotion, “Evaluation of earthquake in the Central Tottori prefecture on October 21, 2016,” [accessed October 11, 2017]
  11. [11] The Japan Meteorological Agency, “A list of Centroid Moment Tensor solutions,” [accessed October 11, 2017]
  12. [12] S. Miyazaki, K. M. Larson, K. Choi, K. Hikima, K. Koketsu, P. Bodin, J. Haase, G. Emore, and A. Yamagiwa, “Modeling the rapture process of the 2003 September 25 Tokachi-Oki (Hokkaido) earthquake using 1-Hz GPS data,” Geophys. Res. Lett., Vol.31, L21603, doi:10.1029/2004GL021457, 2004.
  13. [13] K. M. Larson, “GPS seismology,” J. Geod, Vol.83, pp. 227-233, doi:10.1007/s00190-008-0233-x, 2009.
  14. [14] H. Bock, R. Dach, A. Jaggi, and G. Beutler, “High-rate GPS clock corrections from CODE: support of 1 Hz applications,” J. Geod, Vol.83, pp. 1083-1094, doi:10.1007/s00190-009-0326-1, 2009.
  15. [15] S. Kawamoto, Y. Ohta, Y. Hiyama, M. Todoriki, T. Nishimura, T. Furuya, Y. Sato, T. Yahagi, and K. Miyagawa, “REGARD: A new GNSS-based real-time finite fault modeling system for GEONET,” J. Geophys. Res., Vol.122, pp. 1324-1349, doi:10.1002/2016JB013485, 2017.
  16. [16] S. Kawamoto, Y. Hiyama, Y. Ohta, and T. Nishimura, “First result from the GEONET real-time analysis system (REGARD): the case of the 2016 Kumamoto earthquakes,” Earth Planet. Space, Vol.68, p. 190, doi:10.1186/s40623-016-0564-4, 2016.
  17. [17] H. Munekane, “A prototype system for PPP kinematic positioning of Japanese GEONET stations,” J. GSI, Vol.129 (in Japanese with English abstract).
  18. [18] F. Guo, X. Li, X. Zhang, and J. Wang, “The contribution of Multi-GNSS Experiment (MGEX) to precise point positioning,” Adv. Space Res., Vol.50, pp. 2714-2725.
  19. [19] H. Tsuji, Y. Hatanaka, Y. Sato, T. Furuya, A. Suzuki, H. Muramatsu, T. Inukai, K. Mikihara, N. Takamatsu, T. Nakakuki, S. FUjiwara, T. Imakiire, M. Tobita, and H. Yarai, “Effect of adjacent frequency signal on geodetic GNSS observations,” paper presented at Japan Geoscience Union meeting, May 22–26, Makuhari Messe, Chiba, Japan, 2016.
  20. [20] X. Li, M. Ge, X. Zhang, Y. Zhang, B. Guo, R. Wang, J. Klotz, and J. Wicket, “Real-time high-rate co-seismic displacement from ambiguity-fixed precise point positioning: Application to earthquake early warning,” Geophys. Res. Lett., Vol.40, pp. 395-300, doi:10.1002/grl50138, 2013.
  21. [21] K. Sato, H. Tateshita, Y. Wakabayashi, H. Kakimoto, and S. Kogure, “Asia Oceania Multi-GNSS Demonstration Campaign,” paper presented at FIG Congress 2014, Kuala Lumpur, Malaysia, June 16-21, 2014.
  22. [22] UNAVCO Real-time GPS Data, [accessed October 11, 2017]

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 12, 2024