single-dr.php

JDR Vol.11 No.1 pp. 15-30
doi: 10.20965/jdr.2016.p0015
(2016)

Paper:

Preliminary Results of Weather Radar Observations of Sakurajima Volcanic Smoke

Masayuki Maki*1, Masato Iguchi*2, Takeshi Maesaka*3, Takahiro Miwa*3, Toshikazu Tanada*3, Tomofumi Kozono*4, Tatsuya Momotani*5, Akihiko Yamaji*5, and Ikuya Kakimoto*6

*1Research and Education Center for Natural Hazards, Kagoshima University
1-21-40 Korimoto, Kagoshima 890-0065, Japan
*2Disaster Prevention Research Institute, Kyoto University, Kagoshima, Japan
*3National Research Institute for Earth Science and Disaster Prevention, Tsukuba, Japan
*4Graduate school, Tohoku University, Sendai, Japan
*5Japan Weather Agency, Tokyo, Japan
*6Mitsubishi Electric Co., Hyogo, Japan

Received:
September 2, 2015
Accepted:
January 19, 2016
Online released:
February 1, 2016
Published:
February 1, 2016
Keywords:
weather radar, Sakurajima, volcanic ash cloud, ash smoke, eruption
Abstract

Preliminary results of quantitative analysis of volcanic ash clouds observed over the Sakurajima volcano in Kagoshima, Japan, were obtained by using weather radar and surface instruments. The Ka-band Doppler radar observations showed the inner structure of a volcanic ash column every two minutes after an eruption. Operational X-band polarimetric radar provides information on three-dimensional ash fall amount distribution. The terminal fall velocity of ash particles was studied by using optical disdrometers, together with the main specifications of observation instruments.

References
  1. [1]  K. Iwanami, M. Maki, R. Misumi, S. Watanabe, and K. Hata, “The NIED dual-frequency cloud radar system under development,” In Proc. 1st Int. Workshop on Spaceborne Cloud Profiling Radar, Tsukuba, Japan, pp. 161-164, 2000.
  2. [2]  M. Löffler-Mang, and J. Joss, “An optical disdrometer for measuring size and velocity of hydrometeors,” J. Atmos. Oceanic Technol., Vol.17, pp. 130–139, 2000.
  3. [3]  H. E. Urban, M. Schönhuber, W. L. Randeu, and W. Riedler, “Technical Note under ESTEC/Contract No.9949/92/NL/PB(SC) – Work Order No.02 (“Development and Delivery of a 2D-Video-Distrometer”),” Institute of Applied Systems Technology, JOANNEUM RESEARCH, Graz / Austria, 1994.
  4. [4]  M. Schönhuber, H. E. Urban, E. M. Richter, W. L. Randeu, and W. Riedler, “Design Review Report under ESTEC/Contract No.9949/92/NL/PB(SC) – Work Order No.02 (“Development and Delivery of a 2D-Video-Distrometer”),” Institute of Applied Systems Technology, JOANNEUM RESEARCH, Graz / Austria, 1993.
  5. [5]  M. Schönhuber, G. Lammer, and W. L. Randeu, “The 2D-video-distrometer, Precipitation, Advances in Measurement, Estimation and Prediction,” S. Michaelides, Ed., Springer, pp. 3-31, 2008.
  6. [6]  A. Kruger, and W. F. Krajewski, “Two-Dimensional Video Disdrometer: A Description,” J. Atmos. Oceanic Technol., Vol.19, pp. 602–617, 2002.
  7. [7]  T. Miwa, M. Maki, T. Kozono, E. Fujita, T. Tanada, and M. Iguchi, “Experimental Measurement on Falling Velocity of Volcanic Ash from Sakurajima Volcano by Using PARSIVEL Disdrometer,” Annuals Disas. Prev. Res. Inst., Kyoto Univ., No.58 B, pp. 91-94, 2015 (in Japanese with English abstract).
  8. [8]  S. Kameyama, T. Ando, T. Yanagihara, H. Sakamaki, T. Wakayama, Y. Hirano, M. Furuta, M. Hagio, and Y. Fujii, “Winds measurements with earth environment survey laser – Application of cohelent Doppler lidar in various area,” Inspection Engineering, Vol.9, No.8, pp. 25-29, 2004 (in Japanese).
  9. [9]  A. Tokay, D. B. Wolff, and W. A. Petersen, “Evaluation of the New Version of the Laser-Optical Disdrometer OTT Parsivel,” J. Atmos. Oceanic. Technol., Vol.31, pp. 1276-1288, 2014.
  10. [10]  J. Joss, and A. Waldvogel, “Ein Spektrograph fur Niederschlagstrophen mit automatischer Auswertung,” Pure Appl. Geophys., Vol.68, pp. 240-246, 1967.
  11. [11]  V. Nespor, W. F. Krajewski, and A. Kruger, “Wind-induced error of raindrop distribution measurement using a two-dimensional video disdrometer,” J. Atmos. Oceanic Technol., Vol.17, pp. 1483–1492, 2000.
  12. [12]  G-J. Huang, V. N. Bringi, M. Thurai, “Orientation Angle Distributions of Drops after 80 m fall using a 2D-Video Disdrometer,” J. Atmos. Oc. Tech., Vol.25, pp. 1717-1723, 2008.
  13. [13]  D. Ohara, Y. Tajima, S. Numao, Y. Shimomura, K. Tamura, T. Yamakoshi, Takao, N. Takezawa, Y. Itou, “Development of an automatic weight measurement system for volcanic ash,” Abstracts, Japan Geoscience Union Meeting (CD-ROM), V159-P025, 2009 (in Japanese).
  14. [14]  T. Takeshi, S. Tsurumoto, K. Shimokubo, S. Aso, A. Matsuoka, T. Yamakoshi, K. Tamura, D. Obara, K. Fukuda, Y. Tajima, and Y. Shimomura, “Continuous operation of Kohai-hyeto meter in Sakurajima volcano,” Abstract, Japan Society Erosion Control Engineering, 2010 (in Japanese).
  15. [15]  Y. Tajima, K. Fukuda, Y. Kunimoto, E. Takahashi, K. Shimokubo, S. Aso, and M. Iguchi, “Continuous monitoring of volcanic ash falls by automatic Kohai-meters, at Sakurajima volcano,” Programme and Abstracts, the Volcanological Society of Japan, 2011 (in Japanese).
  16. [16]  Y. Tajima, D. Ohara, K. Fukuda, and S. Shimomura, “Development of automatic tephrameter for monitoring of volcano,” Nippon Koei Technical Forum, Vol.23, pp. 39-46, 2015.
  17. [17]  M. Maki, “Three-Dimensional Interpolated Radar Data of Volcanic Ash Clouds,” Programme and Abstracts, the Volcanological Society of Japan, 2015 (Japanese).
  18. [18]  V. N. Bringi and V. Chandrasekar, “Polarimetric Doppler Weather Radar: Principles and Applications,” Cambridge University Press, 2001.
  19. [19]  M. Maki, T. Maesaka, and T. Kozono, M. Nagai, R. Furukawa, S. Nakada, T. Koshida, and H. Takenaka, “Quantitative Volcanic Ash Estimation by Operational Polarimetric Weather Radara,” Proc. 9th International Symposium on Tropospheric Profiling, D. Cimini, P. Di Girolamo, F. S. Marzano, and V. Rizi (Eds.), ISBN: 978-90-815839-4-7, doi:10.12898/ISTP9prc, L’Aquila, Italy, September 2012, 4pp., 2013.
  20. [20]  K. Ishihara, “Pressure sources and induced ground deformation associated with explosive eruptions at andesitic volcano: Sakurajima volcano, Japan, Magma transport and storage (Ed. M.P. Ryan),” John Wiley and Sons, pp. 335-356, 1990.
  21. [21]  M. Iguchi, “Prediction of volume of volcanic ash ejected from Showa crater of Sakurajima volcano, Japan,” Annuals Disas. Prev. Res. Inst., Kyoto Univ., No.55 B, pp. 169-175, 2012 (in Japanese with English abstract).
  22. [22]  M. Iguchi, A. Yokoo, and T. Tameguri, “Intensity of Volcanic Eruptions at Showa Crater of Sakurajima Volcano,” Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No.53B, pp. 234-240, 2010 (in Japanese with English abstract).
  23. [23]  D. M. Harris, and WI. Rose, “Estimating particle sizes, concentrations, and total mass of ash in volcanic clouds using weather radar,” J. Geophys. Res., Vol.88, pp. 10969-10983, 1983.
  24. [24]  F. S. Marzano, S. Barbieri, G. Vulpiani, and W. Rose, “Volcanic Ash Cloud Retrieval by Ground-Based Microwave Weather Radar,” IEEE Trans. Geosci. Remote Sens., Vol.44, pp.3235- 3246, 2006.
  25. [25]  L. Wilson, “Explosive volcanic eruptions – II : The atmospheric trajectories of pyroclasts,” Geophys. J. R. Astron. Soc., Vol.30, No.2, pp. 381-392, 1972.
  26. [26]  D. Atlas, R. S. Srivastava, and R. S. Sekhon, “Doppler radar characteristics of precipitation at vertical incidence,” Rev. Geophys. Space Phys., Vol.11, pp. 1-35, 1973.
  27. [27]  T. Kozono, T. Miwa, M. Maki, T. Maesaka, D. Miki, and M. Iguchi, “PARSIVEL tephra-fall observations at Sakurajima volcano,” Annuals of Disas. Prev. Inst., Kyoto Univ., No.58 B, 2015.
  28. [28]  F. S. Marzano, G. Vulpiani, and W. I. Rose, “Microphysical characterization of microwave radar reflectivity due to volcanic ash clouds,” IEEE Trans. Geosci. Remote Sens., Vol.44, No.2, pp. 313-327, 2006.
  29. [29]  W. K. Brown and K. H. Wohletz, “Derivation of the Weibull distribution based on physical principles and its connection to the Rosin-Rammler and lognormal distributions,” J. Appl. Phys., Vol.78, No.4, pp. 2758-2763, 1995.
  30. [30]  T. Oguchi, M. Udagawa, N. Nanba, M. Maki, and Y. Ishimine, “Measurements of Dielectric Constant of Volcanic Ash Erupted From Five Volcanoes in Japan,” IEEE Trans Geosci. Remote Sensing, Vol.47, No.4, pp. 1089-1096, 2009.
  31. [31]  Kagoshima Local Meteorological Observatory, http://www.jma-net.go.jp/kagoshima/vol/data/skr_ash_vol.html, 2015.
  32. [32]  M. Maki, M. Iguchi, E. Fujita, T. Miwa, T. Maesaka, Y. Shussse, T. Kozono, T. Momotani, and A. Yamaji, “Weather Radar Observations of Sakurajima Volcanic Smoke,” Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No.58B, pp. 76-85, 2015 (in Japanese with English abstract).

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on May. 01, 2017