single-dr.php

JDR Vol.9 No.6 pp. 925-930
(2014)
doi: 10.20965/jdr.2014.p0925

Paper:

Estimation of a Source Model and Strong Motion Simulation for Tacna City, South Peru

Nelson Pulido*1, Shoichi Nakai*2, Hiroaki Yamanaka*3,
Diana Calderon*4, Zenon Aguilar*4, and Toru Sekiguchi*2

*1National Research Institute for Earth Science and Disaster Prevention, 3-1 Tennodai, Tsukuba, Ibaraki 305-0006, Japan

*2Chiba University, Chiba, Japan

*3Tokyo Institute of Technology, Kanagawa, Japan

*4Universidad Nacional de Ingeniería, Perú, Lima, Perú

Received:
August 18, 2014
Accepted:
September 8, 2014
Published:
December 1, 2014
Keywords:
strong motion, source process, 1868 earthquake, seismic hazard, South Peru
Abstract
We estimate several scenarios for source models of megathrust earthquakes likely to occur on the Nazca-South American plates interface in southern Peru. To do so, we use a methodology for estimating the slip distribution of megathrust earthquakes based on an interseismic coupling (ISC) distribution model in subduction margins and on information about historical earthquakes. The slip model obtained from geodetic data represents large-scale features of asperities within the megathrust that are appropriate for simulating long-period waves and tsunami modelling. To simulate broadband frequency strong ground motions, we add small scale heterogeneities to the geodetic slip by using spatially correlated random noise distributions. Using these slip models and assuming several hypocenter locations, we calculate a set of strong ground motions for southern Peru and incorporate site effects obtained from microtremors array surveys in Tacna, the southernmost city in Peru.
Cite this article as:
N. Pulido, S. Nakai, H. Yamanaka, D. Calderon, Z. Aguilar, and T. Sekiguchi, “Estimation of a Source Model and Strong Motion Simulation for Tacna City, South Peru,” J. Disaster Res., Vol.9 No.6, pp. 925-930, 2014.
Data files:
References
  1. [1] M. Chlieh, H. Perfettini, H. Tavera, J.-P. Avouac, D. Remy, J.-M. Nocquet, et al., “Interseismic coupling and seismic potential along the Central Andes subduction zone,” J. Geophys. Res., 116, B12405, doi:10.1029/2010JB008166, 2011.
  2. [2] H. Perfettini, J.-P. Avouac, H. Tavera, A. Kositsky, J.-M. Nocquet, F. Bondoux, M. Chlieh, A. Sladen, L. Audin, D. Farber, and P. Soler, “Aseismic and seismic slip on the Megathrust offshore southern Peru revealed by geodetic strain before and after the Mw8.0, 2007 Pisco earthquake,” Nature, Vol.465, pp. 78-81, doi:10.1038/nature09062, 2010.
  3. [3] N. Moreno, M. Rosenau, and O. Oncken, “2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone,” Nature, 467, pp. 198-204, 2010.
  4. [4] J. P. Loveless and B. J. Meade, “Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 Mw = 9.0 Tohoku-oki earthquake,” Geophys. Res. Lett., Vol.38, No,17, doi: 10.1029/2011GL048561, 2011.
  5. [5] N. Pulido, Z. Aguilar, H. Tavera, M. Chlieh, D. Calderon, T. Sekiguchi, S. Nakai, and F. Yamazaki, “Scenario source models and strong ground motion for future mega-earthquakes: Application to Lima, Central Peru,” Bull. Seism. Soc. Am., 2014 (in press).
  6. [6] L. Dorbath et al., “Assessment of the size of large and great historical earthquakes in Peru,” Bull. Seismol. Soc. Am., Vol.80, No.3, pp. 551-576, 1990.
  7. [7] E. Kendrick, M. Bevis, J. R. Smalley, B. Brooks, R. B. Vargas, E. Lauria et al., “The Nazca-South America Euler vector and its rate of change,” J. South Am. Earth Sci., Vol.16, No.2, pp. 125-131, doi:10.1016/S0895-9811(1003)00028-00022, 2003.
  8. [8] W. Suzuki, N. Pulido, and S. Aoi, “Rupture process of the 2014 Northern Chile (Pisagua) earthquake derived from strong-motion records,” Proceedings of the 14th Japan Earthquake Engineering Symposium, 2014 (in press).
  9. [9] N. Pulido and T. Kubo, “Near-Fault Strong Motion Complexity of the 2000 Tottori Earthquake (Japan) from a Broadband Source Asperity Model,” Tectonophysics, Vol.390, pp. 177-192, 2004.
  10. [10] N. Pulido, A. Ojeda, K. Atakan, and T. Kubo, “Strong Ground Motion Estimation in the Marmara Sea Region (Turkey) Based on a Scenario Earthquake,” Tectonophysics, Vol.391, pp. 357-374, 2004.
  11. [11] M.. B. Sorensen, K. Atakan, and N. Pulido, “Simulated strong ground motions for the great M9.3 Sumatra-Andaman earthquake of December 26, 2004,” Bull. Seism. Soc. Am., Vol.97, No.1A, pp. S139-S151, doi: 10.1785/0120050608, 2007a.
  12. [12] M.. B. Sorensen, N. Pulido, and K. Atakan, “Sensitivity of Ground-Motion Simulations to Earthquake Source Parameters: A Case Study for Istanbul, Turkey,” Bull. Seism. Soc. Am., Vol.97, pp. 881-900, doi: 10.1785/0120060044, 2007b.
  13. [13] N. Pulido and L. Dalguer, “Estimation of the high-frequency radiation of the 2000 Tottori (Japan) earthquake based on a dynamic model of fault rupture: Application to the strong ground motion simulation,” Bull. Seism. Soc. Am., Vol.99, No.4, pp. 2305-2322, doi: 10.1785/012008016, 2009.
  14. [14] N. Pulido, H. Tavera, Z. Aguilar, S. Nakai, and F. Yamazaki, “Strong Motion Simulation of the M8.0 August 15, 2007, Pisco Earthquake; Effect of a Multi-Frequency Rupture Process,” Journal of Disaster Research, Vol.8, No.2, pp. 235-242, 2013.
  15. [15] P. M. Mai, P. Spudich, and J. Boatwright, “Hypocenter Locations in Finite-Source Rupture Models,” Bull. Seism. Soc. Am., Vol.95, pp. 965-980, doi: 10.1785/0120040111, 2005.
  16. [16] P. S. Cunningham, S. Roecker, and D. Hatzfeld, “Threedimensional P and S wave velocity structures of southern Peru and their tectonic implications,” J. Geophys. Res., Vol.91, No.B9, pp. 9517-9532, 1986.
  17. [17] K. Phillips, R. W. Clayton, P. Davis, H. Tavera, R. Guy, S. Skinner, I. Stubailo, L. Audin, and V. Aguilar, “Structure of the subduction system in southern Peru from seismic array data,” J. Geophys. Res., Vol.117, B11306, doi:10.1029/2012JB009540, 2012.
  18. [18] H.. Yamanaka, M. S. Quispe-Gamero, K. Chimoto, K. Saguchi, D. Calderon, F. Lazares, and Z. A. Bardales, “Exploration of Deep sedimentary layers in Tacna city, southern Peru, using microtremors and earthquake data for estimation of local amplification,” Journal of Seismology, 2014 (in review).
  19. [19] T. Brocher, “Key elements of regional seismic velocity models for long period ground motion simulations,” J. Seismol., Vol.12, pp. 217-221, 2008.
  20. [20] D. Garcia, S. K. Singh, M. Herraiz, M. Ordaz, J. F. Pacheco, and H. Cruz-Jimenez, “Influence of subduction structure on coastal and inland attenuation in Mexico,” Geophys. J. Int., Vol.179, pp. 215-230, doi:10.1111/j.1365-246X.2009.04243.x, 2009.
  21. [21] M. Raoof and O. Nuttli, “Attenuation of High-Frequency Earthquake Waves in South America,” PAGEOPH, Vol.122, pp. 619-644, 1984.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 19, 2024