single-dr.php

JDR Vol.9 No.3 pp. 339-357
(2014)
doi: 10.20965/jdr.2014.p0339

Review:

Review on Near-Field Tsunami Forecasting from Offshore Tsunami Data and Onshore GNSS Data for Tsunami Early Warning

Hiroaki Tsushima* and Yusaku Ohta**

*Meteorological Research Institute, Japan Meteorological Agency, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan

**Research Center for Prediction of Earthquakes and Volcanic Eruptions, Graduate School of Science, Tohoku University, 6-6 Aoba Aramaki-Aza, Aoba-ku, Sendai 980-8578, Japan

Received:
February 3, 2014
Accepted:
April 10, 2014
Published:
June 1, 2014
Keywords:
offshore tsunami observation, real-time GNSS (GPS), near-field tsunamis, tsunami early warning system, combination use
Abstract

This paper reviews recent studies on methods of realtime forecasting for near-field tsunamis that use either offshore tsunami data or onshore global navigation satellite system (GNSS) data. Tsunami early warning systems for near-field coastal communities are vital because evacuation time before tsunami arrival is usually very short. We focus on forecasting between the occurrence of a tsunamigenic earthquake and the arrival of the first tsunami at a near-field coast – typically a few tens of minutes or less after the earthquake. Offshore tsunami measurement that provides coastal communities with direct information on impending tsunamis is very effective in providing reliable tsunami predictions. Crustal deformation due to coseismic slips at an earthquake fault detected by real-time GNSS analysis is quite useful in estimating fault expansion and the amount of slip, which in turn contributes to timely tsunami warnings, e.g., within 10 minutes, even for huge interplate earthquakes. Our review encompasses methods on the leading edge of research and those already in the process of being applied practically. We also discuss an effective combination of methods developed for mitigating tsunami disasters.

Cite this article as:
H. Tsushima and Y. Ohta, “Review on Near-Field Tsunami Forecasting from Offshore Tsunami Data and Onshore GNSS Data for Tsunami Early Warning,” J. Disaster Res., Vol.9, No.3, pp. 339-357, 2014.
Data files:
References
  1. [1] A. Katsumata, “Revision of the JMA displacement magnitude,” Quart. J. Seismol., Vol.67, pp. 1-11, 2004 (in Japanese with English abstract).
  2. [2] H. Tatehata, “The new tsunami warning system of the Japan Meteorological Agency,” in Perspectives on Tsunami Hazard Reduction: Theory and Planning, ed. G. Hebenstreit, pp. 175-188, Kluwer Academic Publishers, 1997 (also in Sci. Tsunami Hazards, Vol.16, pp. 39-49, 1997).
  3. [3] T. Ozaki, “Outline of the 2011 off the Pacific coast of Tohoku Earthquake (Mw9.0) – Tsunami warnings/advisories and observations –,” Earth Planets Space, Vol.63, pp. 827-830, doi:10.5047/eps.2011.05.019, 2011.
  4. [4] T. Kato, Y. Terada, M. Kinoshita, H. Kakimoto, H. Isshiki, M. Matsuishi, A. Yokoyama, and T. Tanno, “Real-time observation of tsunami by RTK-GPS,” Earth Planets Space, Vol.52, pp. 841-845, 2000.
  5. [5] H. Kanamori, “Mechanism of tsunami earthquakes,” Phys. Earth Planet. Inter., Vol.6, pp. 346-359, doi:10.1016/0031-9201(72)90058-1, 1972.
  6. [6] D. J. Miller, “Giant waves in Lituya Bay, Alaska,” Geological survey professional paper, USGS Proffesional Papers, 354-C, 1960.
  7. [7] M. Takahashi, “Telemetry bottom pressure observation system at a depth of 2,200 meter,” J. Phys. Earth, Vol.29, pp. 77-88, 1981.
  8. [8] Meteorological Research Institute, “Permanent ocean bottom seismograph observation system,” Tech. Rep., Vol.4, 233pp., Tsukuba, Japan, 1980 (in Japanese with English abstract).
  9. [9] I. Fujisawa, S. Tateyama, and J. Funazaki, “Permanent ocean bottom earthquake and tsunami observation system off the Boso Peninsula,” Weather Serv. Bull., Vol.53, pp. 127-166, 1986 (in Japanese).
  10. [10] T. Kanazawa and A. Hasegawa, “Ocean-bottom observatory for earthquakes and tsunami off Sanriku, north-east Japan using submarine cable,” Int. Workshop on Scientific Use of Submarine Cables, Comm. for Sci. Use of Submarine Cables, Okinawa, Japan, pp. 208-209, 1997.
  11. [11] H. Momma, N. Fujiwara, K. Kawaguchi, R. Iwase, S. Suzuki, and H. Kinoshita, “Monitoring system for submarine earthquakes and deep sea environment,” in Conf. Proc. of Oceans ’97 MTS/IEEE, pp. 1453-1459, doi:10.1109/OCEANS.1997.624211, Mar. Technol. Soc., Washington, D. C., October 6-9, 1997.
  12. [12] T. Eguchi, Y. Fujinawa, E. Fujita, S. Iwasaki, I. Watabe, and H. Fujiwara, “A real-time observation network of ocean bottom seismometers deployed at the Sagami Trough subduction zone, central Japan,” Mar. Geophys. Res., Vol.20, pp. 73-94, doi:10.1023/A:1004334021329, 1998.
  13. [13] K. Hirata, M. Aoyagi, H. Mikada, K. Kawaguchi, Y. Kaiho, R. Iwase, S. Morita, I. Fujisawa, H. Sugioka, K. Mitsuzawa, K. Suyehiro, H. Kinoshita, and N. Fujiwara, “Real-time geophysical measurements on the deep seafloor using submarine cable in the southern Kurile subduction zone,” IEEE J. Oceanic Eng., Vol.27, pp. 170-181, doi:10.1109/JOE.2002.1002471, 2002.
  14. [14] S. Saito, “JMA’s new ocean bottom seismographs (OBS) using marine cable installed at the Sea of Enshu to the Sea of Kumano,” Chikyu Mon., Vol.29, pp. 516-522, 2007 (in Japanese).
  15. [15] Y. Kaneda, K. Kawaguchi, E. Araki, A. Sakuma, H. Matsumoto, T. Nakamura, S. Kamiya, K. Ariyoshi, T. Baba, M. Ohori, and T. Hori, “Dense Ocean floor Network for Earthquakes and Tsunamis (DONET) – Development and Data application for the mega thrust earthquakes around the Nankai Trough –,” Eos Trans. AGU, Vol.90, No.52, Fall Meet. Suppl., Abstract S53A-1453, 2009.
  16. [16] H. Mikada, K. Mitsuzawa, H. Matsumoto, T. Watanabe, S. Morita, R. Otsuka, H. Sugioka, T. Baba, E. Araki, and K. Suyehiro, “New discoveries in dynamics of an M8 earthquake-phenomena and their implications from the 2003 Tokachi-Oki earthquake using a long term monitoring cabled observatory,” Tectonophysics, Vol.426, pp. 95-105, doi:10.1016/j.tecto.2006.02.021, 2006.
  17. [17] H. Tsushima, R. Hino.Y. Tanioka, F. Imamura, and H. Fujimoto, “Tsunami waveform inversion incorporating permanent seafloor deformation and its application to tsunami forecasting,” J. Geophys. Res., Vol.117, B03311, doi:10.1029/2011JB008877, 2012a.
  18. [18] T. Maeda, T. Furumura, S. Sakai, and M. Shinohara, “Significant tsunami observed at the ocean-bottom pressure gauges during 2011 off the Pacific coast of Tohoku Earthquake,” Earth Planets Space, Vol.63, pp. 803-808, doi:10.5047/eps.2011.06.005, 2011.
  19. [19] H. Tsushima, K. Hirata, Y. Hayashi, Y. Tanioka, K. Kimura, S. Sakai, M. Shinohara, T. Kanazawa, R. Hino, and K. Maeda, “Nearfield tsunami forecasting using offshore tsunami data from the 2011 off the Pacific coast of Tohoku Earthquake,” Earth Planets Space, Vol.63, pp. 821-826, doi:10.5047/eps.2011.06.052, 2011.
  20. [20] Y. Ito, T. Tsuji, Y. Osada, M. Kido, D. Inazu, Y. Hayashi, H. Tsushima, R. Hino, and H. Fujimoto, “Frontal wedge deformation near the source region of the 2011 Tohoku-Oki earthquake,” Geophys. Res. Lett., Vol.38, L00G05, doi:10.1029/2011GL048355, 2011.
  21. [21] T. Saito, Y. Ito, D. Inazu, and R. Hino.“Tsunami source of the 2011 Tohoku-oki earthquake, Japan: Inversion analysis based on dispersive tsunami simulations,” Geophys. Res. Lett., Vol.38, L00G19, doi:10.1029/2011GL049089, 2011.
  22. [22] F. I. González, E. N. Bernard, C. Meinig, M. Eble, H. O. Mofjeld, and S. Stalin, “The NTHMP tsunameter network,” Nat. Hazards, Vol.35, pp. 25-39, doi:10.1007/s11069-004-2402-4, 2005.
  23. [23] V. V. Titov, F. I. González, E. N. Bernard, M. C. Eble, H. O. Mofjeld, J. C. Newman, and A. J. Venturato, “Real-time tsunami forecasting: Challenges and solutions,” Nat. Hazards, Vol.35, pp. 35-41, doi:10.1007/s11069-004-2403-3, 2005.
  24. [24] C. Meinig, S. E. Stalin, A. I. Nakamura, and H. B. Milburn, “Realtime Deep-ocean Tsunami Measuring, Monitoring, and Reporting System: The NOAA DART II Description and Disclosure,” 2005,
    http://nctr.pmel.noaa.gov/Dart/Pdf/DART_II_Description_6_4_05.pdf [accessed March 30, 2014]
  25. [25] H. O. Mofjeld, “Tsunami Detection Algorithm,” 1997,
    http://www.pmel.noaa.gov/tsunami/tda_documentation.html [accessed March 30, 2014]
  26. [26] M. C. Spillane, E. Gica, V. V. Titov, and H. O. Mofjeld, “Tsunameter network design for the U.S. DART arrays in the Pacific and Atlantic Oceans,” NOAA Tech. Memo., OAR PMEL-143, 165pp., 2008.
  27. [27] R. Hino, Y. Tanioka, T. Kanazawa, S. Sakai, M. Nishino, and K. Suyehiro, “Micro-tsunami from a local interplate earthquake detected by cabled offshore tsunami observation in northeastern Japan,” Geophys. Res. Lett., Vol.28, pp. 3533-3536, doi:10.1029/2001GL013297, 2001.
  28. [28] K. Hirata, H. Takahashi, E. Geist, K. Satake, Y. Tanioka, H. Sugioka, and H. Mikada, “Source depth dependence of micro-tsunamis recorded with ocean bottom pressure gauges: The January 28, 2000 Mw6.8 earthquake off Nemuro Peninsula, Japan,” Earth Planet. Sci. Lett., Vol.208, pp. 305-318, doi:10.1016/S0012-821X(03)00040-2, 2003.
  29. [29] F. I. González, C. L. Mader, M. C. Eble, and E. N. Bernard, “The 1987-88 Alaskan Bight tsunamis: Deep ocean data and model comparisons,” Nat. Hazards, Vol.4, pp. 119-139, doi:10.1007/BF00162783, 1991.
  30. [30] Y. Tanioka, K. Hirata, R. Hino, and T. Kanazawa, “Slip distribution of the 2003 Tokachi-Oki earthquake estimated from the tsunami waveform inversion,” Earth Planets Space, Vol.56, pp. 373-376, 2004.
  31. [31] Y. Fujii and K. Satake, “Tsunami sources of the November 2006 and January 2007 great Kuril earthquakes,” Bull. Seismol. Soc. Am., Vol.98, pp. 1559-1571, doi:10.1785/0120070221, 2008.
  32. [32] Y. Fujii and K. Satake, “Slip distribution and seismic moment of the 2010 and 1960 Chilean earthquakes inferred from tsunami waveforms and coastal geodetic data,” Pure Appl. Geophys., Vol.170, pp. 1493-1509, doi:10.1007/s00024-012-0524-2, 2013.
  33. [33] T. Nagai, “Development and improvement of the Japanese coastal wave observation network (NOWPHAS),” J. Jpn. Soc. Civil Eng., No.609(VI-41), pp. 1-14, 1998 (in Japanese).
  34. [34] H. Kawai, M. Satoh, T. Nagai, and K. Kawaguchi, “2010 Chilean Tsunami Observed by GPS-mounted Buoy Network on Tohoku to Shikoku Coast, Japan,” J. Jpn. Soc. Civil Eng., Ser. B2 (Coastal Engineering), Vol.66, No.1, pp. 266-270, doi:10.2208/kaigan.66.266, 2010 (in Japanese with English abstract).
  35. [35] T. Kato, Y. Terada, K. Ito, R. Hattori, T. Abe, T. Miyake, S. Koshimura, and T. Nagai, “Tsunami due to the 2004 September 5th off the Kii peninsula earthquake, Japan, recorded by a new GPS buoy,” Earth Planets Space, Vol.57, pp. 297-301, 2005.
  36. [36] T. Baba, P. R. Cummins, and T. Hori, “Compound fault rupture during the 2004 off the Kii Peninsula earthquake (M7.4) inferred from highly resolved coseismic sea-surface deformation,” Earth Planets Space, Vol.57, pp. 167-172, 2005.
  37. [37] K. Satake, T. Baba, K. Hirata, S. Iwasaki, T. Kato, S. Koshimura, J. Takenaka, and Y. Terada, “Tsunami source of the 2004 off Kii Peninsula earthquakes inferred from offshore tsunami and coastal tide gauges,” Earth Planets Space, Vol.57, pp. 173-178, 2005.
  38. [38] T. Saito, K. Satake, and T. Furumura, “Tsunami waveform inversion including dispersive waves: the 2004 earthquake off Kii Peninsula, Japan,” J. Geophys. Res., Vol.115, B06303, doi:10.1029/2009JB006884, 2010.
  39. [39] T. Takayama, Y. Suzuki, H. Tsuruya, S. Takahashi, C. Gotoh, T. Nagai, N. Hashimoto, T. Nagao, T. Hosoyamada, K. Shimosako, K. Endo, and T. Asa, “Field investigations of the tsunami caused by 1993 Hokkaido Nansei-oki Earthquake,” Tech. Note Port Harbour Res. Inst., No.775, 225pp., 1994 (in Japanese).
  40. [40] T. Nagai and H. Ogawa, “Characteristic of the 2003 Tokachi-off Earthquake Tsunami Profile,” Tech. Note Port Harbour Res. Inst., No.1070, 92pp., 2004 (in Japanese).
  41. [41] H. Kawai, M. Satoh, K. Kawaguchi, and K. Seki, “The 2011 off the Pacific Coast of Tohoku Earthquake Tsunami Observed by GPS Buoys,” J. Jpn. Soc. Civil Eng., Ser. B2 (Coastal Engineering), Vol.67, No.2, pp. I_1291-I_1295, doi:10.2208/kaigan.67.I_1291, 2011 (in Japanese with English abstract).
  42. [42] Y. Hayashi, H. Tsushima, K. Hirata, K. Kimura, and K. Maeda, “Tsunami source area of the 2011 off the Pacific coast of Tohoku Earthquake determined from tsunami arrival times at offshore observation stations,” Earth Planets Space, Vol.63, pp. 809-813, doi:10.5047/eps.2011.06.042, 2011a.
  43. [43] Y. Fujii, K. Satake, S. Sakai, M. Shinohara, and T. Kanazawa, “Tsunami source of the 2011 off the Pacific coast of Tohoku Earthquake,” Earth Planets Space, Vol.63, pp. 815-820, doi:10.5047/eps.2011.06.010, 2011.
  44. [44] A. R. Gusman, Y. Tanioka, S. Sakai, and H. Tsushima, “Source model of the great 2011 Tohoku earthquake estimated from tsunami waveforms and crustal deformation data,” Earth Planet. Sci. Lett., Vol.341, pp. 234-242, doi:10.1016/j.epsl.2012.06.006, 2012.
  45. [45] K. Satake, Y. Fujii, T. Harada, and Y. Namegaya, “Time and Space Distribution of Coseismic Slip of the 2011 Tohoku Earthquake as Inferred from Tsunami Waveform Data,” Bull. Seismol. Soc. Am., Vol.103, No.2B, pp. 1473-1492, doi:10.1785/0120120122, 2013.
  46. [46] T. Takagawa and T. Tomita, “Effects of Rupture Processes in an Inverse Analysis on the Tsunami Source of the 2011 Off the Pacific Coast of Tohoku Earthquake,” in Proc. of the Twenty-second (2012) Int. Offshore and Polar Engineering Conf., Rhodes, Greece,. June 17-22, 2012a.
  47. [47] T. Takagawa and T. Tomita, “Tsunami Source Inversion with Time Evolution and Real-time Estimation of Permanent Deformation at Observation Points,” J. Jpn. Soc. Civil Eng., Ser. B2 (Coastal Engineering), Vol.68, No.2, pp. I_311-I_315, doi:10.2208/kaigan.68.I_311, 2012b (in Japanese with English abstract).
  48. [48] V. V. Titov and F. I. González, “Implementation and testing of the Method of Splitting Tsunami (MOST) model,” NOAA Tech. Memo., ERL PMEL-112, 11pp., 1997.
  49. [49] E. Gica, M. Spillane, V. V. Titov, C. Chamberlin, and J. C. Newman, “Development of the forecast propagation database for NOAA’s Short-term Inundation Forecast for Tsunamis (SIFT),” NOAA Tech. Memo. OAR PMEL-139, 89pp., 2008.
  50. [50] L. Tang, V. V. Titov, Y. Wei, H. O. Mofjeld, M. Spillane, D. Arcas, E. N. Bernard, C. Chamberlin, E. Gica, and J. Newman, “Tsunami forecast analysis for the May 2006 Tonga tsunami,” J. Geophys. Res., Vol.113, C12015, doi:10.1029/2008JC004922, 2008.
  51. [51] Y. Wei, E. N. Bernard, L. Tang, R. Weiss, V. V. Titov, C. Moore, M. Spillane, M. Hopkins, and U. Kanoglu, “Realtime experimental forecast of the Peruvian tsunami of August 2007 for U.S. coastlines,” Geophys. Res. Lett., Vol.35, L04609, doi:10.1029/2007GL032250, 2008.
  52. [52] L. Tang, V. V. Titov, E. N. Bernard, Y. Wei, C. D. Chamberlin, J. C. Newman, H. O. Mofjeld, D. Arcas, M. C. Eble, C. Moore, B. Uslu, C. Pells, M. Spillane, L. Wright, and E. Gica, “Direct energy estimation of the 2011 Japan tsunami using deepocean pressure measurements,” J. Geophys. Res., Vol.117, C08008, doi:10.1029/2011JC007635, 2012.
  53. [53] Y. Wei, C. Chamberlin, V. V. Titov, L. Tang, and E. N. Bernard, “Modeling of 2011 Japan Tsunami – lessons for near-field forecast,” Pure Appl. Geophys., Vol.170, pp. 1309-1331, doi:10.1007/s00024-012-0519-z, 2013.
  54. [54] N. Mori, T. Takahashi, T. Yasuda, and H. Yanagisawa, “Survey of 2011 Tohoku earthquake tsunami inundation and run-up,” Geophys. Res. Lett., Vol.38, L00G14, doi:10.1029/2011GL049210, 2011.
  55. [55] E. N. Bernard, Y. Wei, L. Tang, and V. V. Titov, “Impact of near-field, deep-ocean tsunami observations on forecasting the 7 December 2012 Japanese tsunami,” Pure Appl. Geophys., doi:10.1007/s00024-013-0720-8, 2013.
  56. [56] Y. Fukao, “Tsunami earthquake and subduction processes near deep-sea trenches,” J. Geophys. Res., Vol.84, No.B5, pp. 2303-2314, doi:10.1029/JB084iB05p02303, 1979.
  57. [57] H. Tsushima, R. Hino, H. Fujimoto, Y. Tanioka, and F. Imamura, “Application of Cabled Offshore Ocean Bottom Tsunami Gauge Data for Real-Time Tsunami Forecasting,” in Proc. of Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies, 2007, pp. 612-620, doi: 10.1109/UT.2007.370824, 2007.
  58. [58] H. Tsushima, R. Hino, H. Fujimoto, Y. Tanioka, and F. Imamura, “Near-field tsunami forecasting from cabled ocean bottom pressure data,” J. Geophys. Res., Vol.114, B06309, doi:10.1029/2008JB005988, 2009.
  59. [59] K. Satake, “Linear and nonlinear computations of the 1992 Nicaragua earthquake tsunami,” Pure Appl. Geophys., Vol.144, pp. 455-470, doi:10.1007/BF00874378, 1995.
  60. [60] Y. Tanioka and K. Satake, “Fault parameters of the 1896 Sanriku tsunami earthquake estimated from tsunami numerical modeling,” Geophys. Res. Lett., Vol.23, pp. 1549-1552, doi:10.1029/96GL01479, 1996.
  61. [61] T. Yasuda, T. Takayama, K, Kawahara, and H. Mase, “Real-Time Tsunami Prediction by Inverse Analysis of Tsunami Profiles Observed at Offshore Points,” J. Jpn. Soc. Civil Eng., Vol.54, pp. 196-200, doi:10.2208/proce1989.54.196, 2007 (in Japanese).
  62. [62] T. Yasuda and H. Mase, “Real-Time Tsunami Prediction by Inversion Method Using Offshore Observed GPS Buoy Data: Nankaido,” J. Waterway, Port, Coastal, Ocean Eng., Vol.139, No.3, pp. 221-231, doi:10.1061/(ASCE)WW.1943-5460.0000159, 2013.
  63. [63] Central Disaster Management Council., “Risk assessment results of Tokai-Tonankai-Nankai earthquake disaster,” Cabinet Office, Government of Japan, 2003 (in Japanese).
  64. [64] D. Tatsumi and T. Tomita, “Real-time Tsunami Prediction Based on Inversion Method Using Epicenter,” J. Jpn. Soc. Civil Eng., Vol.55, pp. 246-250, doi:10.2208/proce1989.55.246, 2008 (in Japanese with English abstract).
  65. [65] D. Tatsumi and T. Tomita, “Real-time tsunami inundation prediction based on inversion method,” J. Jpn. Soc. Civil Eng., Ser. B2 (Coastal Engineering), Vol.65, No.1, pp. 351-355, doi:10.2208/kaigan.65.351, 2009 (in Japanese with English abstract).
  66. [66] D. Tatsumi and T. Tomita, “Development and implementation of real-time tsunami inundation prediction method,” J. Jpn. Soc. Civil Eng., Ser. B2 (Coastal Engineering), Vol.69, No.1, pp. 34-47, doi:10.2208/kaigan.69.34, 2013 (in Japanese with English abstract).
  67. [67] T. Yasuda, A. Fujii, N. Mori, and H. Mase, “Study on an Applicability of Real-time Forecast Method Targeting the 2011 Tohoku Offshore Earthquake Tsunami,” J. Jpn. Soc. Civil Eng., Ser. B2 (Coastal Engineering), Vol.68, No.2, pp. I_321-I_325, doi:10.2208/kaigan.68.I_321, 2012 (in Japanese with English abstract).
  68. [68] T. Takagawa, T. Tomita, and D. Tatsumi, “Development and validation of real-time tsunami hazard mapping system,” AGU Fall Meeting 2013, San Francisco, NH41B-1716, 2013.
  69. [69] G. Green, “On the motion of waves in a variable canal of small depth and width,” Trans. Cambridge Philos. Soc., Vol.6, pp. 457-462, 1837.
  70. [70] T. Baba, K. Hirata, and Y. Kaneda, “Tsunami magnitudes determined from ocean bottom pressure gauge data around Japan,” Geophys. Res. Lett., Vol.31, L08303, doi:10.1029/2003GL019397, 2004.
  71. [71] H. Takayama, “Statistical relationship between tsunami maximum amplitudes of offshore and coastal stations,” Pap. Meteorol. Geophys., Vol.59, pp. 83-95, 2008.
  72. [72] Y. Hayashi, “Empirical relationship of tsunami height between offshore and coastal stations,” Earth Planets Space, Vol.62, pp. 269-275, doi:10.5047/eps2009.11.006, 2010a.
  73. [73] Y. Hayashi, “Real-time tsunami information by utilizing equivalent coastal tsunami height defined by a long-period wave component of GPS buoy,” J. JSNDS, Vol.29, No.3, pp. 381-391, 2010b (in Japanese with English abstract).
  74. [74] T. Baba, N. Takahashi, and Y. Kaneda, “Near-field tsunami amplification factors in the Kii Peninsula, Japan for Dense Oceanfloor Network for Earthquakes and Tsunamis (DONET),” Mar. Geophys. Res., doi:10.1007/s11001-013-9189-1, 2013.
  75. [75] J. D. Jakeman, O. M. Nielsen, K. V. Putten, R. Mleczeko, D. Burbidge, and N. Horspool, “Towards spatially distributed quantitative assessment of tsunami inundation models,” Ocean Dynamics, Vol.60, pp. 1115-1138, doi:10.1007/s10236-010-0312-4, 2010.
  76. [76] K. Satake, “Tsunamis,” in Int. Handbook of Earthquake and Engineering Seismology, in W. H. K. Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger (Eds.), Academic Press, 81A, pp. 437-451, doi:10.1016/S0074-6142(02)80231-5, 2002.
  77. [77] T. Baba, N. Takahashi, Y. Kaneda, Y. Inazawa, and M. Kikkojin, “Tsunami inundation modeling of the 2011 Tohoku earthquake using three-dimensional building data for Sendai, Miyagi Prefecture, Japan,” in Y. A. Kontar, V. S.-Fandiño, and T. Takahashi (Eds.) Tsunami Events and Lessons Learned, Environmental and Societal Significance, Advances in Natural and Technological Hazards Research, Vol.35, pp. 89-98, doi:10.1007/978-94-007-7269-4_3, Springer, Amsterdam, 2014.
  78. [78] I. Abe and F. Imamura, “Study on the evaluation of tsunami inundation in real time with database and its accuracy,” J. Jpn. Soc. Civil Eng., Ser. B2 (Coastal Engineering), Vol.66, pp. 261-265, doi:10.2208/kaigan.66.261, 2010 (in Japanese with English abstract).
  79. [79] I. Abe and F. Imamura, “Verification of the Real-time Forecasting system for Tsunami Inundation using the GPS Buoy in the Case of the 2011 Tohoku Earthquake,” J. Jpn. Soc. Civil Eng., Ser. B2 (Coastal Engineering), Vol.68, No.2, pp. I_376-I_380, doi:10.2208/kaigan.68.I_376, 2012 (in Japanese with English abstract).
  80. [80] S. Seto, T. Takahashi, and Y. Hayashi, “Numerical modeling to Avoid Underestimation of Tsunami Warning by Using GPS-mounted Buoys in the Nankai Trough,” J. Jpn. Soc. Civil Eng., Ser. B2 (Coastal Engineering), Vol.69, No.2, I_406-I_410, doi:10.2208/kaigan.69.I_406, 2013 (in Japanese with English abstract).
  81. [81] S. Miyazaki, K. M. Larson, K. Choi, K. Hikima, K. Koketsu, P. Bodin, J. Haase, G. Emore, and A. Yamagiwa, “Modeling the rupture process of the 2003 September 25 Tokachi-Oki (Hokkaido) earthquake using 1-Hz GPS data,” Geophys. Res. Lett., Vol.31, L21603, doi:10.1029/2004GL021457, 2004.
  82. [82] R. Dach, U. Hugentobler, P. Fridez, and M. Meindl, “User Manual of the Bernese GPS Software Version 5.0,” 612pp., Astron. Inst., Univ. of Bern, Bern, 2007.
  83. [83] S. M. Lichten and J. S. Border, “Strategies for high precision Global Positioning System orbit determination,” J. Geophys. Res., Vol.92, No.B12, pp. 12751-12762, doi:10.1029/JB092iB12p12751, 1987.
  84. [84] T. A. Herring, R. W. King, and S. C. McClusky, “Introduction to GAMIT/GLOBK Release 10.3,” Dep. Earth Atmos. Planet. Sci., Mass. Inst. of Technol., Cambridge, 2006.
  85. [85] P. D. Groves, “Principles of GNSS,” Inertial and Multisensor Integrated Navigation Systems – Second Edition, Artech House, 2013, 776pp., ISBN-13: 978-1-60807-005-3, 2013.
  86. [86] T. Takasu, “Real-time PPP with RTKLIB and IGS real-time satellite orbit and clock,” IGS Workshop 2010, Newcastle upon Tyne, England, June 28-July 2, 2010.
  87. [87] K. Hirahara, T. Nakano, Y. Hoso, S. Matsuo, and K. Obana, “An experiment for GPS strain seismometer,” in Japanese Symposium on GPS, pp. 67-75, Tokyo, Japan, December 15-16, 1994.
  88. [88] S. Miyazaki, Y. Hatanaka, T. Sagiya, and T. Tada, “The Nationwide GPS Array as an Earth Observation System,” Bull. Geographical Survey Institute, Vol.44, pp. 11-22, 1998.
  89. [89] L. Ge, “GPS seismometer and its signal extraction,” 12th Int. Tech. Meeting, Sat. Div. Inst. of Navigation, Nashville, Tennessee, pp. 41-51, 1999.
  90. [90] L. Ge, S. Han, and C. Rizos, “Multipath mitigation using an adaptive filter,” GPS Solutions, Vol.4, No.2, pp. 19-30, doi:10.1007/PL00012838, 2000.
  91. [91] K. M. Larson, P. Bodin, and J. Gomberg, “Using 1-Hz GPS data to measure deformations caused by the Denali fault earthquake,” Science, Vol.300, pp. 1421-1424, doi:10.1126/science.1084531, 2003.
  92. [92] Y. Bock, Y. L. Prawirodirdjo, and T. I. Melbourne, “Detection of arbitrarily large dynamic ground motions with a dense high-rate GPS network,” Geophys. Res. Lett., Vol.31, L06604, doi:10.1029/2003GL019150, 2004.
  93. [93] K. Hudnut and K. Nancy, “SCIGN: New Southern California GPS network advances the study of earthquakes,” Fact Sheet, 069-01, 2, 2001.
  94. [94] Y. Bock, R. Nikolaidis, P. de Jonge, and M. Bevis, “Instantaneous geodetic positioning at medium distances with the Global Positioning System,” J. Geophys. Res., Vol.105, No.B12, pp. 28,223-28,253, doi:10.1029/2000JB900268, 2000.
  95. [95] Y. Ohta, I. Meilano, T. Sagiya, F. Kimata, and K. Hirahara, “Large surface wave of the 2004 Sumatra-Andaman earthquake captured by the very long baseline kinematic analysis of 1-Hz GPS data,” Earth Planets Space, Vol.58, No.2, pp. 153-157, 2006.
  96. [96] Y. Ohta, M. Ohzono, S. Miura, T. Iinuma, K. Tachibana, K. Takatsuka, K. Miyao, T. Sato, and N. Umino, “Coseismic fault model of the 2008 Iwate-Miyagi Nairiku earthquake deduced by a dense GPS network,” Earth Planets Space, Vol.60, No.12, pp. 1197-1201, 2008.
  97. [97] A. Bilich, J. F. Cassidy, and K. M. Larson, “GPS Seismology: Application to the 2002 Mw7.9 Denali Fault Earthquake,” Bull. Seismol. Soc. Am., Vol.98, No.2, pp. 593-606, doi:10.1785/0120070096, 2008.
  98. [98] H. Issiki, A. Tsuchiya, T. Kato, Y. Terada, H. Kakimoto, M. Kinoshita, M. Kanzaki, and T. Tanno.“Precise Variance Detection by a Single GPS Receiver, – PVD (Point precise Variance Detection) Method –,” J. of the Geod. Soc. of Japan, Vol.46, No.4, pp. 239-251, 2000.
  99. [99] G. Colosimo, M. Crespi, and A. Mazzoni, “Real-time GPS seismology with a stand-alone receiver: A preliminary feasibility demonstration,” J. Geophys. Res., Vol.116, No.B11, pp. 1-14, doi:10.1029/2010JB007941, 2011.
  100. [100] M. Branzanti, G. Colosimo, M. Crespi, and A. Mazzoni, “GPS Near-Real-Time Coseismic Displacements for the Great Tohokuoki Earthquake,” IEEE Geosci. Remote Sens. Lett., Vol.10, No.2, pp. 372-376, doi:10.1109/LGRS.2012.2207704, 2013.
  101. [101] X. Li, M. Ge, B. Guo, J. Wickert, and H. Schuh, “Temporal point positioning approach for real-time GNSS seismology using a single receiver,” Geophys. Res. Lett., Vol.40, No.21, pp. 5677-5682, doi:10.1002/2013GL057818, 2013.
  102. [102] Y. Yokota, K. Koketsu, K. Hikima, and S. Miyazaki, “Ability of 1-Hz GPS data to infer the source process of a medium-sized earthquake: The case of the 2008 Iwate-Miyagi Nairiku, Japan, earthquake,” Geophys. Res. Lett., Vol.36, L12301, doi:10.1029/2009GL037799, 2009.
  103. [103] K. M. Larson, “GPS seismology,” J. Geod., Vol.83, No.3-4, pp. 227-233, doi:10.1007/s00190-008-0233-x, 2009.
  104. [104] G. Blewitt, C. Kreemer, W. C. Hammond, H.-P. Plag, S. Stein, and E. Okal, “Rapid determination of earthquake magnitude using GPS for tsunami warning systems,” Geophys. Res. Lett., Vol.33, L11309, doi:10.1029/2006GL026145, 2006.
  105. [105] G. Blewitt, W. C. Hammond, C. Kreemer, H.-P. Plag, S. Stein, and E. Okal, “GPS for real-time earthquake source determination and tsunami warning systems,” J. Geod., Vol.83, pp. 335-343, doi:10.1007/s00190-008-0262-5, 2009.
  106. [106] S. V. Sobolev, A. Y. Babeyko, R. Wang, A. Hoechner, R. Galas, M. Rothacher, D. V. Sein, J. Schröter, J. Lauterjung, and C. Subarya, “Tsunami early warning using GPS-Shield arrays,” J. Geophys. Res., Vol.112, No.B8, pp. 1-18, doi:10.1029/2006JB004640, 2007.
  107. [107] Y. T. Song, “Detecting tsunami genesis and scales directly from coastal GPS stations,” Geophys. Res. Lett., Vol.34, No.19, L19602, doi:10.1029/2007GL031681, 2007.
  108. [108] T. Nishimura, T. Imakiire, and M. Tobita, “Development on the Rapid Estimation for an Earthquake Fault Model Using Real-time 1-second Sampling GPS Data,” J. of the Geospatial Information Authority of Japan, Vol.120, pp. 63-73, 2010 (in Japanese).
  109. [109] R. M. Allen and A. Ziv, “Application of real-time GPS to earthquake early warning,” Geophys. Res. Lett., Vol.38, No.16, pp. 1-7, doi:10.1029/2011GL047947, 2011.
  110. [110] R. Allen, “Automatic earthquake recognition and timing from single traces,” Bull. Seismol. Soc. Am., Vol.68, pp. 1521-1532, 1978.
  111. [111] D. Melgar, Y. Bock, and B. W. Crowell, “Real-time centroid moment tensor determination for large earthquakes from local and regional displacement records,” Geophys. J. Int., Vol.188, pp. 703-718, doi:10.1111/j.1365-246X.2011.05297.x, 2012.
  112. [112] Y. Ohta, T. Kobayashi, H. Tsushima, S. Miura, R. Hino, T. Takasu, H. Fujimoto, T. Iinuma, K. Tachibana, T. Demachi, T. Sato, M. Ohzono, and N. Umino, “Quasi real-time fault model estimation for near-field tsunami forecasting based on RTK-GPS analysis: Application to the 2011 Tohoku-Oki Earthquake (Mw9.0),” J. Geophys. Res., Vol.117, B02311, doi:10.1029/2011JB008750, 2012.
  113. [113] B. W. Crowell, Y. Bock, and D. Melgar, “Real-time inversion of GPS data for finite fault modeling and rapid hazard assessment,” Geophys. Res. Lett., Vol.39, No.9, pp. 1-6, doi:10.1029/2012GL051318, 2012.
  114. [114] S. Colombelli, R. M. Allen, and A. Zollo, “Application of realtime GPS to earthquake early warning in subduction and strike-slip environments,” J. Geophys. Res., Vol.118, No.7, pp. 3448-3461, doi:10.1002/jgrb.50242, 2013.
  115. [115] A. Hoechner, M. Ge, A. Y. Babeyko, and S. V. Sobolev, “Instant tsunami early warning based on real-time GPS – Tohoku 2011 case study,” Nat. Hazards Earth Syst. Sci., Vol.13, No.5, pp. 1285-1292, doi:10.5194/nhess-13-1285-2013, 2013.
  116. [116] N. Mori, T. Takahashi, and The 2011 Tohoku earthquake tsunami joint survey group, “Nationwide post event survey and analysis of the 2011 Tohoku earthquake tsunami,” Coastal Eng. J., Vol.54, No.4, 1250001, doi:10.1142/S0578563412500015, 2012.
  117. [117] D. Melgar, B. W. Crowell, Y. Bock, and J. S. Haase, “Rapid modeling of the 2011 Mw9.0 Tohoku-oki earthquake with seismogeodesy,” Geophys. Res. Lett., Vol.40, No.12, 2963-2968, doi:10.1002/grl.50590, 2013.
  118. [118] T. J. Wright, N. Houlié, M. Hildyard, and T. Iwabuchi, “Realtime, reliable magnitudes for large earthquakes from 1-Hz GPS Precise Point Positioning: the 2011 Tohoku-Oki (Japan) earthquake,” Geophys. Res. Lett., Vol.39, pp. 1-5, doi:10.1029/2012GL051894, 2012.
  119. [119] M. Hoshiba and T. Ozaki, “Earthquake early warning and tsunami warning of JMA for the 2011 off the Pacific Coast of Tohoku earthquake,” J. Seismol. Soc. Japan. 2nd ser., Vol.64, No.3, pp. 155-168, doi:10.4294/zisin.64.155, 2012 (in Japanese with English abstract).
  120. [120] Japan Meteorological Agency, “Lessons learned from the tsunami disaster caused by the 2011 Great East Japan Earthquake and improvements in JMA’s tsunami warning system,” 2013,
    http://www.seisVol.kishou.go.jp/eq/eng/tsunami/LessonsLearned_Improvements_brochure.pdf [accessed January 31, 2014]
  121. [121] A. Katsumata, H. Ueno, S. Aoki, Y. Yoshida, and S. Barientos, “Rapid magnitude determination from peak amplitudes at local stations,” Earth Planets Space, Vol.65, pp. 843-853, doi:10.5047/eps.2013.03.006, 2013.
  122. [122] Japan Meteorological Agency, “Start of new tsunami warning system operation,” 2012,
    http://www.seisVol.kishou.go.jp/eq/eng/tsunami/tsunamiwarning_leaflet.pdf [accessed March 30, 2014]
  123. [123] H. Tsushima, Y. Hayashi, K. Maeda, T. Yokota, H. Kawakami, S. Hirata, K. Yoshimura, K. Endo, and Y. Kida, “Development of Tsunami Forecasting System Based on Offshore Tsunami Data Assimilation,” J. Jpn. Soc. Civil Eng., Ser. B2 (Coastal Engineering), Vol.69, No.2, pp. I 446-I 450, doi:10.2208/kaigan.69.I 446, 2013 (in Japanese with English abstract).
  124. [124] K. Kajiura, “Tsunami source, energy and the directivity of wave radiation,” Bull. Earthq. Res. Inst., Vol.48, pp. 835-869, 1970.
  125. [125] M. A. Nosov and S. V. Kolesov, “Elastic oscillations of water column in the 2003 Tokachi-Oki tsunami source: in-situ measurements and 3-D numerical modeling,” Nat. Hazards Earth Syst. Sci., Vol.7, pp. 243-249, doi:10.5194/nhess-7-243-2007, 2007.
  126. [126] H. Matsumoto, Y. Hayashi, and Y. Kaneda, “Characteristics of Water Pressure Disturbances on Real-Time Tsunami Data of Ocean-Bottom Pressure Gauges,” J. Jpn. Soc. Civil Eng., Ser. B2 (Coastal Engineering), Vol.68, No.2, pp. I 391-I 395, doi:10.2208/kaigan.68.I 391, 2012 (in Japanese with English abstract).
  127. [127] K. Hirata and T. Baba, “Transient thermal response in ocean bottom pressure measurement,” Geophys. Res. Lett., Vol.33, L10606, doi:10.1029/2006GL026084, 2006.
  128. [128] T. Baba, K. Hirata, T. Hori, and H. Sakaguchi, “Offshore geodetic data conducive to the estimation of the afterslip distribution following the 2003 Tokachi-Oki earthquake,” Earth Planet. Sci. Lett., Vol.241, pp. 281-292, doi:10.1016/j.epsl.2005.10.019, 2006.
  129. [129] D. Inazu and R. Hino.“Temperature correction and usefulness of ocean bottom pressure data from cabled seafloor observatories around Japan for analyses of tsunamis, ocean tides, and lowfrequency geophysical phenomena,” Earth Planets Space, Vol.63, pp. 1133-1149, doi:10.5047/eps.2011.07.014, 2011.
  130. [130] M. Saito, “An automatic design algorithm for band selective recursive digital filters,” Butsuri Tankou, Vol.31, pp. 112-135, 1978 (in Japanese).
  131. [131] M. Ishiguro, T. Sato, Y. Tamura, and M. Ooe, “Tidal data analysis – an introduction to BAYTAP,” Proc. Inst. Stat. Math., Vol.32, pp. 71-85, 1984 (in Japanese with English abstract).
  132. [132] K. Matsumoto, T. Takanezawa, and M. Ooe, “Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan,” J. Oceanogr., Vol.56, pp. 567-581, doi:10.1023/A:1011157212596, 2000.
  133. [133] E. Tolkova, “Principal component analysis of tsunami buoy record: tide prediction and removal,” Dyn. Atmos. Oceans, Vol.46, No.1-4, pp. 62-82, doi:10.1016/j.dynatmoce.2008.03.001, 2009.
  134. [134] Y. Ohta, T. Kobayashi, S. Miura, and T. Takasu, “Long term stabilities and its noise properties of the middle to long baseline RTK-GPS time series,” Japan Geoscience Union Meeting, Abstract SGD001-P02, 2010.
  135. [135] T. Kobayashi, Y. Ohta, and S. Miura, “Development of an autodetection method for coseismic displacement using RTK-GPS,” Japan Geoscience Union Meeting, Abstract SSS014-08, 2010.
  136. [136] T. Kobayashi, Y. Ohta, S.Miura, R. Hino, H. Fujimoto, T. Demachi, and K. Tachibana, “Improvement on automatic detection method of coseismic displacement in the RTK-GPS time series using neighboring sites information,” J. of the Geod. Soc. of Japan, Vol.58, No.2, pp. 77-87, doi:10.11366/sokuchi.58.77, 2012 (in Japanese with English abstract).
  137. [137] T. Demachi, Y. Ohta, S. Miura, K. Tachibana, and T. Sato, “Development of visualization tool for real-time GPS time series (preliminary report),” 118th meeting of the geodetic society of Japan, 2013 (in Japanese).
  138. [138] H. Kanamori, “W phase,” Geophys. Res. Lett., Vol.20, No.16, pp. 1691-1694, doi:10.1029/93GL01883, 1993.
  139. [139] H. Kanamori and L. Rivera, “Source inversion of W phase: Speeding up seismic tsunami warning,” Geophys. J. Int., Vol.175, pp. 222-238, doi:10.1111/j.1365-246X.2008.03887.x, 2008.
  140. [140] Z. Duputel, L. Rivera, H. Kanamori, G. P. Hayes, B. Hirsorn, and S. Weinstei, “Real-time W phase inversion during the 2011 off the Pacific coast of Tohoku Earthquake,” Earth Planets Space, Vol.63, No.7, pp. 535-539, doi:10.5047/eps.2011.05.032, 2011.
  141. [141] E. L. Geist, “Complex earthquake rupture and local tsunamis,” J. Geophys. Res., Vol.107, No.B5, 2086, doi:10.1029/2000JB000139, 2002.
  142. [142] H. Kanamori and D. L. Anderson, “Theoretical basis of some empirical relations in seismology,” Bull. Seism. Soc. Am., Vol.65, No.5, pp. 1073-1095, 1975.
  143. [143] R. Benavente and P. R. Cummins, “Simple and reliable finite fault solutions for large earthquakes using the W-phase: The Maule (Mw = 8.8) and Tohoku (Mw = 9.0) earthquakes,” Geophys. Res. Lett., Vol.40, No.14, pp. 3591-3595, doi:10.1002/grl.50648, 2013.
  144. [144] S. Ide, A. Baltay, and G. C. Beroza, “Shallow dynamic overshoot and energetic deep rupture in the 2011 Mw9.0 Tohoku-Oki earthquake,” Science, Vol.332, No.6036, pp. 1426-1429, doi:10.1126/science.1207020, 2011.
  145. [145] T. Iinuma, R. Hino, M. Kido, D. Inazu, Y. Osada, Y. Ito,M. Ohzono, H. Tsushima, S. Suzuki, H. Fujimoto, and S.Miura, “Coseismic slip distribution of the 2011 off the Pacific Coast of Tohoku Earthquake (M9.0) refined by means of seafloor geodetic data,” J. Geophys. Res., Vol.117, No.B7, pp. 1-18, doi:10.1029/2012JB009186, 2012.
  146. [146] D. Melgar and Y. Bock, “Near-field tsunami models with rapid earthquake source inversions from land- and ocean-based observations: The potential for forecast and warning,” J. Geophys. Res., Vol.118, No.11, pp. 5939-5955, doi:10.1002/2013JB010506, 2013.
  147. [147] Y. Kaneda, “Real time monitoring systems and advanced simulation researches for Earthquakes/Tsunami disaster mitigation,” AGU Fall Meeting 2013, San Francisco, NH34A-04, 2013.
  148. [148] K. Uehira, T. Kanazawa, S. Noguchi, S. Aoi, T. Kunugi, T. Matsumoto, Y. Okada, S. Sekiguchi, K. Shiomi, and T. Yamada, “Ocean bottom seismic and tsunami network along the Japan Trench,” AGU Fall Meeting 2012, San Francisco, OS41C-1736, 2012.
  149. [149] T. Kanazawa, “Japan Trench earthquake and tsunami monitoring network of cable-linked 150 ocean bottom observatories and its impact to earth disaster science,” in Underwater Technology Symposium (UT): Conf. Proc. of 2013, 2013 IEEE Int., doi:10.1109/UT.2013.6519911, March 5-8, 2013.
  150. [150] T. Saito, “Dynamic tsunami generation due to sea-bottom deformation: Analytical representation based on linear potential theory,” Earth Planets Space, Vol.65, pp. 1411-1423, doi:10.5047/eps.2013.07.004, 2013.
  151. [151] H. Tsushima, K. Hirata, Y. Hayashi, K. Maeda, and T. Ozaki, “Effect of Offshore Tsunami Station Array Configuration on Accuracy of Near-Field Tsunami Forecast,” J. Jpn. Soc. Civil Eng., Ser. B2 (Coastal Engineering), Vol.68, No.2, pp. I 211-I 215, doi:10.2208/kaigan.68.I 211, 2012b (in Japanese with English abstract).
  152. [152] T. Maeda, K. Obara, M. Shinohara, T. Kanazawa, and K. Uehira, “Towards real time tsunami forecasting without source: A data assimilation approach with dense tsunamator network,” AGU Fall Meeting 2013, San Francisco, NH41B-1713, 2013.
  153. [153] Y. Hayashi, S. Koshimura, and F. Imamura, “Feasibility of Using Tsunami Coda and Envelope for Forecasting Far-field Tsunami – Their Definitions and Application to 2006 Kuril Island Earthquake Tsunami –,” J. Jpn. Soc. Civil Eng., Ser. B2 (Coastal Engineering, Vol.65, No.1, pp. 276-280, doi:10.2208/kaigan.65.276, 2009 (in Japanese with English abstract).
  154. [154] Y. Hayashi, S. Koshimura, and F. Imamura, “Time-Dependent Decay Model of MRMS Tsunami Amplitudes for Forecasting Decay of Far-field Tsunamis,” J. Jpn. Soc. Civil Eng., Ser. B2 (Coastal Engineering), Vol.67, No.2, pp. I 216-I 220, doi:10.2208/kaigan.67.I 216, 2011b (in Japanese with English abstract).
  155. [155] Y. Hayashi, “Present research status and prospects on the timing for cancelling tsunami warnings,” Quart. J. Seismol., Vol.75, pp. 13-24, 2012 (in Japanese with English abstract).
  156. [156] T. Saito, D. Inazu, S. Tanaka, and T. Miyoshi, “Tsunami coda across the Pacific Ocean following the 2011 Tohoku-Oki earthquake,” Bull. Seismol. Soc. Am., Vol.103, No.2B, pp. 1429-1443, doi:10.1785/0120120183, 2013.
  157. [157] Y. Hayashi, F. Imamura, and S. Koshimura, “Feasibility of Using Decay Characteristics on Trends and Fluctuations of Tsunami for Forecasting Far-field Tsunami,” J. Jpn. Soc. Civil Eng., Ser. B2 (Coastal Engineering), Vol.66, No.1, pp. 211-215, doi:10.2208/kaigan.66.211, 2010 (in Japanese with English abstract).
  158. [158] Y. Hayashi, S. Koshimura, and F. Imamura, “Comparison of decay features of the 2006 and 2007 Kuril Island earthquake tsunami,” Geophys. J. Int., Vol.190, pp. 347-357, doi:10.1111/j.1365-246X.2012.05466.x, 2012.
  159. [159] H. Tsushima, R. Hino, Y. Ohta, and T. Iinuma, “tFISH/RAPiD: near-field tsunami forecasting based on joint use of offshore tsunami and onshore GPS data,” Seismol. Soc. of Jpn. 2012 Fall Meeting, Abstract C11-08, 2012c (in Japanese).
  160. [160] L. M. Rolland, G. Occhipinti, P. Lognonné, and A. Loevenbruck, “Ionospheric gravity waves detected offshore Hawaii after tsunamis,” Geophys. Res. Lett., Vol.37, No.17, L17191, doi:10.1029/2010GL044479, 2010.
  161. [161] T. Tsugawa, A. Saito, Y. Otsuka, M. Nishioka, T. Maruyama, H. Kato, T. Nagatsuma, and K. T. Murata, “Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake,” Earth Planets Space, Vol.63, No.7, pp. 875-879, doi:10.5047/eps.2011.06.035, 2011.
  162. [162] D. A. Galvan, A. Komjathy, M. P. Hickey, and A. J. Mannucci, “The 2009 Samoa and 2010 Chile tsunamis as observed in the ionosphere using GPS total electron content,” J. Geophys. Res., Vol.116, No.A6, A06318, doi:10.1029/2010JA016204, 2011.
  163. [163] D. A. Galvan, A. Komjathy, M. P. Hickey, P. Stephens, J. Snively, Y. T. Song, M. D. Butala, and A. J. Mannucci, “Ionospheric signatures of Tohoku-Oki tsunami of March 11, 2011: Model comparisons near the epicenter,” Radio Sci., Vol.47, No.4, doi:10.1029/2012RS005023, 2012.
  164. [164] A. Komjathy, D. A. Galvan, P. Stephens, M. D. Butala, and V. Akopian, “Detecting ionospheric TEC perturbations caused by natural hazards using a global network of GPS receivers: The Tohoku case study,” Earth Planets Space, Vol.64, No.12, pp. 1287-1294, doi:10.5047/eps.2012.08.003, 2012.
  165. [165] H. Toh, K. Satake, Y. Hamano, Y. Fujii, and T. Goto, “Tsunami signals from the 2006 and 2007 Kuril earthquakes detected at a seafloor geomagnetic observatory,” J. Geophys. Res., Vol.116, B02104, doi:10.1029/2010JB007873, 2011.
  166. [166] H. Utada, H. Shimizu, T. Ogawa, T. Maeda, T. Furumura, T. Yamamoto, N. Yamazaki, Y. Yoshitake, and S. Nagamachi, “Geomagnetic field changes in response to the 2011 off the Pacific Coast of Tohoku Earthquake and Tsunami,” Earth, Planet. Science Lett., Vol.311, No.1-2, pp. 11-27, doi:10.1016/j.epsl.2011.09.036, 2011.
  167. [167] T. Minami and H. Toh, “Two-dimensional simulations of the tsunami dynamo effect using the finite element method,” Geophys. Res. Lett., Vol.40, pp. 4560-4564, doi:10.1002/grl.50823, 2013.
  168. [168] H. Sugioka, Y. Hamano, K. Baba, T. Kasaya, N. Tada, and D. Suetsugu, “Tsunami Ocean dynamo generator,” Scientific Reports, Vol.4, doi:10.1038/srep03596, 2014.
  169. [169] D. E. Barrick, “A coastal radar system for tsunami warning,” Remote Sensing of the Environment, Vol.8, pp. 353-358, 1979.
  170. [170] B. J. Lipa, D. E. Barrick, J. Bourg, and B. B. Nyden, “HF Radar Detection of Tsunamis,” Journal of Oceanography, Vol.62, pp. 705-716, 2006.
  171. [171] R. Fuji, H. Hinata, S. Fujii, and T. Takahashi, “Influences of Time Integration on the Accuracy of Inversion based on Ocean Radar,” J. Jpn. Soc. Civil Eng., Ser. B2 (Coastal Engineering), Vol.69, No.2, pp. I 436-I 440, doi:10.2208/kaigan.69.I 436, 2013 (in Japanese with English abstract).
  172. [172] P. Wessel and W. H. F. Smith, “New, improved version of generic mapping tools released,” Eos Trans. AGU, Vol.79, No.47, pp. 579, doi:10.1029/98EO00426, 1998.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Jan. 18, 2019