Review:
Synthetic Biology and Dual Use
Daisuke Kiga
Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, J2-1806, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8503, Japan
- [1] L. Villa-Komaroff et al., “A bacterial clone synthesizing proinsulin,” Proc. Natl. Acad. Sci. USA, Vol.75, pp. 3727-3731, 1978.
- [2] W. P. Stemmer, “Rapid evolution of a protein in vitro by DNA shuffling,” Nature, Vol.370, pp. 389-391, doi:10.1038/370389a0, 1994.
- [3] Y. Shimizu et al., “Cell-free translation reconstituted with purified components,” Nat Biotechnol, Vol.19, pp. 751-755, doi:10.1038 /90802, 90802 [pii], 2001.
- [4] T. Kobayashi, S. Mikami, S. Yokoyama, and H. Imataka, “An improved cell-free system for picornavirus synthesis,” J Virol Methods, Vol.142, pp. 182-188, doi: S0166-0934(07)00052-3 [pii], 10.1016/j.jviromet.2007.01.026, 2007.
- [5] A. Molla, A. V. Paul, and E.Wimmer, “Cell-free, de novo synthesis of poliovirus,” Science, Vol.254, pp. 1647-1651, 1991.
- [6] J. Cello, A. V. Paul, and E. Wimmer, “Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template,” Science, Vol.297, pp. 1016-1018, doi:10.1126/science.1072266, 1072266 [pii], 2002.
- [7] D. Kobasa et al., “Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus,” Nature, Vol.445, pp. 319-323, doi: nature05495 [pii], 10.1038/nature05495, 2007.
- [8] M. Imai et al., “Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets,” Nature, Vol.486, pp. 420-428, doi:10.1038/nature10831, nature10831 [pii], 2012.
- [9] S. Herfst et al., “Airborne Transmission of Influenza A/H5N1 Virus Between Ferrets,” Science, Vol.336, pp. 1534-1541, doi: 10.1126/science.1213362, 2012.
- [10] D. G. Gibson et al., “Creation of a bacterial cell controlled by a chemically synthesized genome,” Science, Vol.329, pp. 52-56, doi:science.1190719 [pii], 10.1126/science.1190719, 2010.
- [11] T.S.Gardner, C.R. Cantor, and J.J. Collins, “Construction of a genetic toggleswitchinEscherichiacoli,”Nature,Vol.403,pp.339-342,2000.
- [12] S. Yamanaka, “Elite and stochastic models for induced pluripotent stem cell generation,” Nature, Vol.460, pp. 49-52, doi:10.1038/nature08180, nature08180 [pii], 2009.
- [13] R. Sekine et al., “Tunable synthetic phenotypic diversification on Waddington’s landscape through autonomous signaling,” Proc Natl Acad Sci USA, doi: 10.1073/pnas.1105901108, 2011.
- [14] D. Kiga et al., “An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system,” Proc Natl Acad Sci USA, Vol.99, pp. 9715-9720, 2002.
- [15] Y. Goto, T. Katoh, and H. Suga, “Flexizymes for genetic code reprogramming,” Nat Protoc, Vol.6, pp. 779-790, doi:10.1038 /nprot.2011.331, nprot.2011.331 [pii], 2011.
- [16] A. Kawahara-Kobayashi et al., “Simplification of the genetic code: restricted diversity of genetically encoded amino acids,” Nucleic Acids Res, Vol.40, 10576-10584, doi:10.1093/nar/gks786, 2012.
- [17] K. Amikura and D. Kiga, “RSC Advance.”
- [18] L. M. Adleman, “Molecular computation of solutions to combinatorial problems,” Science, Vol.266, pp. 1021-1024, 1994.
- [19] K. Sakamoto et al., “Molecular computation by DNA hairpin formation,” Science, Vol.288, pp. 1223-1226, doi: 10.1126/science. 288.5469.1223, 2000.
- [20] M. Takinoue, D. Kiga, K. Shohda, and A. Suyama, “Experiments and simulation models of a basic computation element of an autonomous molecular computing system,” Phys Rev E Stat Nonlin Soft Matter Phys, Vol.78, 041921, 2008.
- [21] H. G. Khorana et al., “Studies on polynucleotides. 103. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast,” J Mol Biol, Vol.72, pp. 209-217, 1972.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.