JDR Vol.8 No.4 pp. 698-704
doi: 10.20965/jdr.2013.p0698


Synthetic Biology and Dual Use

Daisuke Kiga

Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, J2-1806, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8503, Japan

May 10, 2013
June 10, 2013
August 1, 2013
synthetic biology, DNA synthesis, reconstruction, risk reduction, breeding

Synthetic biology is science or technology concerning layers of life such as individuals, organs, cells. In this field, components of a layer are combined to construct a system in the upper layer. This paper focuses on studies, at a layer related to gene recombinant experiments, modifying genes and combining multiple genes. By introducing research accomplishments in synthetic biology such as gene networks and synthesis of the whole genome, this paper explains how synthetic biology is an extension of conventional gene engineering and the field of interdisciplinary open innovation. The risks of synthetic biology and risk reduction methods are also introduced.

  1. [1] L. Villa-Komaroff et al., “A bacterial clone synthesizing proinsulin,” Proc. Natl. Acad. Sci. USA, Vol.75, pp. 3727-3731, 1978.
  2. [2] W. P. Stemmer, “Rapid evolution of a protein in vitro by DNA shuffling,” Nature, Vol.370, pp. 389-391, doi:10.1038/370389a0, 1994.
  3. [3] Y. Shimizu et al., “Cell-free translation reconstituted with purified components,” Nat Biotechnol, Vol.19, pp. 751-755, doi:10.1038 /90802, 90802 [pii], 2001.
  4. [4] T. Kobayashi, S. Mikami, S. Yokoyama, and H. Imataka, “An improved cell-free system for picornavirus synthesis,” J Virol Methods, Vol.142, pp. 182-188, doi: S0166-0934(07)00052-3 [pii], 10.1016/j.jviromet.2007.01.026, 2007.
  5. [5] A. Molla, A. V. Paul, and E.Wimmer, “Cell-free, de novo synthesis of poliovirus,” Science, Vol.254, pp. 1647-1651, 1991.
  6. [6] J. Cello, A. V. Paul, and E. Wimmer, “Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template,” Science, Vol.297, pp. 1016-1018, doi:10.1126/science.1072266, 1072266 [pii], 2002.
  7. [7] D. Kobasa et al., “Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus,” Nature, Vol.445, pp. 319-323, doi: nature05495 [pii], 10.1038/nature05495, 2007.
  8. [8] M. Imai et al., “Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets,” Nature, Vol.486, pp. 420-428, doi:10.1038/nature10831, nature10831 [pii], 2012.
  9. [9] S. Herfst et al., “Airborne Transmission of Influenza A/H5N1 Virus Between Ferrets,” Science, Vol.336, pp. 1534-1541, doi: 10.1126/science.1213362, 2012.
  10. [10] D. G. Gibson et al., “Creation of a bacterial cell controlled by a chemically synthesized genome,” Science, Vol.329, pp. 52-56, doi:science.1190719 [pii], 10.1126/science.1190719, 2010.
  11. [11] T.S.Gardner, C.R. Cantor, and J.J. Collins, “Construction of a genetic toggleswitchinEscherichiacoli,”Nature,Vol.403,pp.339-342,2000.
  12. [12] S. Yamanaka, “Elite and stochastic models for induced pluripotent stem cell generation,” Nature, Vol.460, pp. 49-52, doi:10.1038/nature08180, nature08180 [pii], 2009.
  13. [13] R. Sekine et al., “Tunable synthetic phenotypic diversification on Waddington’s landscape through autonomous signaling,” Proc Natl Acad Sci USA, doi: 10.1073/pnas.1105901108, 2011.
  14. [14] D. Kiga et al., “An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system,” Proc Natl Acad Sci USA, Vol.99, pp. 9715-9720, 2002.
  15. [15] Y. Goto, T. Katoh, and H. Suga, “Flexizymes for genetic code reprogramming,” Nat Protoc, Vol.6, pp. 779-790, doi:10.1038 /nprot.2011.331, nprot.2011.331 [pii], 2011.
  16. [16] A. Kawahara-Kobayashi et al., “Simplification of the genetic code: restricted diversity of genetically encoded amino acids,” Nucleic Acids Res, Vol.40, 10576-10584, doi:10.1093/nar/gks786, 2012.
  17. [17] K. Amikura and D. Kiga, “RSC Advance.”
  18. [18] L. M. Adleman, “Molecular computation of solutions to combinatorial problems,” Science, Vol.266, pp. 1021-1024, 1994.
  19. [19] K. Sakamoto et al., “Molecular computation by DNA hairpin formation,” Science, Vol.288, pp. 1223-1226, doi: 10.1126/science. 288.5469.1223, 2000.
  20. [20] M. Takinoue, D. Kiga, K. Shohda, and A. Suyama, “Experiments and simulation models of a basic computation element of an autonomous molecular computing system,” Phys Rev E Stat Nonlin Soft Matter Phys, Vol.78, 041921, 2008.
  21. [21] H. G. Khorana et al., “Studies on polynucleotides. 103. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast,” J Mol Biol, Vol.72, pp. 209-217, 1972.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Jul. 28, 2017