Paper:
Study of Flood Control Capability and Advanced Application of Multiple Dams Constructed in Series
Hideo Oshikawa*, Yuka Mito**, and Toshimitsu Komatsu*
*Graduate School of Engineering, Department of Urban and Environmental Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka-City 819-0395, Japan
**Kyushu Office, Waterworks Structure Division, CTI Engineering Co., Ltd., CTI Fukuoka Building, 2-4-12 Daimyo, Chuo-Ku, Fukuoka-City 810-0041, Japan
- [1] The Intergovernmental Panel on Climate Change (IPCC), “Climate Change 2007: The Physical Science Basis,” Cambridge University Press, 996p., 2007.
- [2] Science Council of Japan, Committee on Planet Earth Science and Committee on Civil Engineering and Architecture, Subcommittee on Land, Society and Natural Disasters, “Proposal, Adaptation to Water-related Disasters Induced by Global Environmental Change,” June 26, 2008.
- [3] H. Oshikawa, A. Hashimoto, K. Tsukahara, and T. Komatsu, “Impacts of Recent Climate Change on Flood Disaster and Preventive Measures,” Journal of Disaster Research, Vol.3, No.2, pp. 131-141, 2008.
- [4] T. Sumi, “Designing and Operating of Flood Retention ‘Dry’ Dams in Japan and USA,” Advances in Hydro-Science and Engineering, Vol.8, pp. 1768-1777 (CD-ROM), 2008.
- [5] M. E. M. Shahmirzadi, T. Sumi, and S. A. Kantoush, “Echo-Friendly Adaptation Design for Stilling Basin of Masudagawa Flood Mitigation Dam,” Proceedings of the International Symposium on Urban Flood Risk Management (UFRIM), pp. 69-74, September 2011.
- [6] T. Sumi, S. A. Kantoush, and A. Shirai, “Worldwide Flood Mitigation Dams: Operating and Designing Issues,” Proceedings of the International Symposium on Urban Flood Risk Management (UFRIM), pp. 101-106, September 2011..
- [7] Y. Nakashima, H. Oshikawa, and T. Komatsu, “Study on Improvement in the Flood Control Ability of a Dry Dam,” Advances in River Engineering, Vol.15, pp. 417-422, 2009 (in Japanese).
- [8] A. D. Ziegler, L. H. She, C. Tantasarin, N. R. Jachowski and R. Wasson, “Floods, False Hope, and the Future,” Hydrological Processes, 2012, DOI: 10.1002/hyp.9260, Wiley Online Library (wileyonlinelibrary. com).
- [9] D. Komori, S. Nakamura, M. Kiguchi, A. Nishijima, D. Yamazaki, S. Suzuki, A. Kawasaki, K. Oki, and T. Oki, “Characteristics of the 2011 Chao Phraya River flood in Central Thailand,” Hydrological Research Letters, Vol.6, pp. 41-46, 2012.
- [10] D. Komori, M. Kiguchi, and S. Nakamura, “The Chaophraya flood 2011 and flood control measures for future,” Journal River, Japan River Association, pp. 3-10, January 2012 (in Japanese).
- [11] T. C. Peterson, P. A. Stott, and S. Herring, “Explaining Extreme Events of 2011 from a Climate Perspective,” Bulletin of the American Meteorological Society, Vol.93, Iss.7, pp. 1041-1067, July 2012.
- [12] H. Oshikawa, T. Imamura, and T. Komatsu, “Study on the Flood Control Ability of a Dry Dam Used as a Flood Retarding Basin in a River,” Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), Vol.67, No.4, pp. I 667-I 672, February 2011 (in Japanese).
- [13] JSCE, “Hydraulics Formulae: Hydraulics Worked Examples with CD-ROM, ” Japan Society of Civil Engineers, ISBN4-8106-0203-6 C3051, 2002 (in Japanese).
- [14] H. Oshikawa, Y. Mito, and T. Komatsu, “Quantitative Estimation on Flood Control Capability of a Dry Dam for a Hydraulic Bore,” Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), Vol.68, No.4, pp. I 871-I 876, 2012 (in Japanese).
- [15] R.V. Giles, J.B. Evett, and C. Liu, “Fluid Mechanics and Hydraulics, Third Edition,” McGraw-Hill, 378p.
- [16] S. H. Lamb, “Hydrodynamics, 6th Edition,” Cambridge, 738p., 1932.
- [17] JSCE, “Hydraulics Formulae 1999,” Japan Society of Civil Engineers, ISBN4-8106-0201-X, 713p., 1999 (in Japanese).
- [18] S. Supratid, “THAILAND GREAT FLOOD 2011: LOOKING BACK AND LOOKING FORWARD,” Proceedings of ICCWP 2012, September 2012.
- [19] International Centre for Water Hazard and Risk Management (ICHARM), Rainfall-Runoff-Inundation Forecasting in the Chao Phraya River,
http://www.icharm.pwri.go.jp/news/news_e_/111024_thai_flood_e.html [accessed Nov. 9, 2011] - [20] N. Kanchit, “A Presentation Material on Flow Discharge Data on Dams with Historical Flood Events from Bhumibol Hydro Power Plant,” Personal communication, February 2012.
- [21] T. Tebakari, J. Yoshitani, and C. Suvanpimol, “Effect of Large Scale Dams on Hydrological Regime in the Chao Phraya River Basin, Kingdom of Thailand,” Annual Journal of Hydraulic Engineering, JSCE, Vol.48, No.1, pp. 481-486, 2004 (in Japanese).
- [22] T. Tebakari and J. Yoshitani, “Effect of the Large-Scale Dams on the Hydrological Regime; A Case Study in Chao Phraya River Basin, Kingdom of Thailand,” J. Japan Soc. Hydrol. & Water Resour., Vol.18, No.3, pp. 281-292, 2005 (in Japanese).
- [23] T. Tebakari, K. Fukami, C. Suvanpimol, M. Miyamoto, and T. Yamada, “Foundational Study on Water Use and Flood Control Effect by the Large Scale Reservoir – A Case Study in Upper Chao Phraya River Basin, Kingdom of Thailand,” Annual Journal of Hydraulic Engineering, JSCE, Vol.49, No.1, pp. 457-462, 2005 (in Japanese).
- [24] T. Tebakari, J. Yoshitani, C. Suvanpimol, M. Miyamoto, and T. Yamada, “Assessment of Flood Control and Water Supply Abilities of Large Scale Reservoir using Numerical Experiment – A Case Study in the Chao Phraya River Basin, Kingdom of Thailand –,” J. Japan Soc. Hydrol. & Water Resour., Vol.20, No.3, pp. 145-155, May 2007 (in Japanese).
- [25] Japan Commission on Large Dams, “Dams in Japan,” 514p., 2012.
- [26] T. Sumi, “Dry Dam in Austria,” Engineering for Dams, Japan Dam Engineering Center, No.277, pp. 1-13, October 2009 (in Japanese).
- [27] T. Sumi, S. Funabashi, and A. Shirai, “Dry Dam in Austria – A Continued Report –,” Engineering for Dams, Japan Dam Engineering Center, No.287, pp. 16-28, August 2010 (in Japanese).
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.