JDR Vol.8 No.2 pp. 274-284
doi: 10.20965/jdr.2013.p0274


Tsunami Inundation Mapping in Lima, for Two Tsunami Source Scenarios

Bruno Adriano*1, Erick Mas*1, Shunichi Koshimura*1,
Yushiro Fujii*2, Sheila Yauri*3, Cesar Jimenez*4,*5,
and Hideaki Yanagisawa*6

*1Laboratory of Remote Sensing and Geoinformatics for Disaster Management, International Research Institute of Disaster Science, Tohoku University, Aoba 6-6-03, Sendai 980-8579, Japan

*2International Institute of Seismology and Earthquake Engineering, Building Research Institute, 1 Tachihara, Tsukuba, Ibaraki 305-0802, Japan

*3Geophysical Institute of Peru (IGP), Calle Badajoz 169, Mayorazgo IV Etapa, Ate Vitarte, Peru

*4Fenlab, Universidad Nacional Mayor de San Marcos (UNMSM), Av. Venezuela s/n, Lima, Peru

*5Dirección de Hidrografía y Navegación (DHN), Calle Roca 116, Chucuito-Callao, Peru

*6Department of Regional Management, Faculty of Liberal Arts, Tohoku Gakuin University, 2-1-1 Tenjinzawa, Izumi-ku, Sendai, Miyagi 981-3193, Japan

November 2, 2012
December 19, 2012
March 1, 2013
inundation modeling, inundation mapping and casualty index

Within the framework of the project Enhancement of Earthquake and Tsunami Disaster Mitigation Technology in Peru (JST-JICA SATREPS), this study determines tsunami inundation mapping for the coastal area of Lima city, based on numerical modeling and two different tsunami seismic scenarios. Additionally, remote sensing data and geographic information system (GIS) analysis are incorporated in order to improve the accuracy of numerical modeling results. Moreover, tsunami impact is evaluated through application of a tsunami casualty index (TCI) using tsunami modeling results. Numerical results, in terms of maximum tsunami depth, show a maximum inundation height of 6 m and 15.8 m for a potential scenario (first source model) and for a past scenario (second source model), respectively. In terms of inundation area, the maximum extension is 1.3 km with a runup height of 5.3 m for the first scenario. The maximum extension is 2.1 km with a runup height of 11.4 m for the second scenario. The average TCI value obtained for the first scenario is 0.36 for the whole inundation domain. The second scenario gives a mean value of 0.64, where TCI equal to 1.00 represents the highest condition of risk. The results presented in this paper provide important information about understanding tsunami inundation features and, consequently, may be useful in designing an adequate tsunami evacuation plan for Lima city.

Cite this article as:
B. Adriano, E. Mas, S. Koshimura, <. Fujii, S. Yauri, C. Jimenez, and <. Yanagisawa, “Tsunami Inundation Mapping in Lima, for Two Tsunami Source Scenarios,” J. Disaster Res., Vol.8, No.2, pp. 274-284, 2013.
Data files:
  1. [1] L. Dorbath, A. Cisternas, and C. Dorbath, “Assessment of t h e size of large and great historical earthquakes in Peru,” Bulletin of the Seismological Society of America, Vol.80, No.3, pp. 551-576, 1990.
  2. [2] Dirección de Hidrografía y Naveagación, “Cartas de Inundación,” 2012.
  3. [3] H. Godoy and J. Monge, “Metodología para la evaluación del riesgo de tsunami. Santiago, Chile,” tech. rep., Publicación SES I 3-75, 1975.
  4. [4] A. Delgado and C. García, “Plan de Evacuación de Ciudades Afectadas por Tsunamis, Zona La Punta-Pucusana. Lima,” B.s. eng. thesis, National University of Engineering, Peru, 1982.
  5. [5] E. Mas and V. Jacome, “Estudios de tsunamis de origen cercano en el Callao centro-norte, planes de evacuacion y uso de suelo,” B.s. eng. thesis, National University of Engineering, Peru, 2008.
  7. [7] C. Goto and Y. Ogawa, “Numerical Method of Tsunami Simulation with the Leap-frog Scheme. Translated for the TIME project by N. Shuto,” 1992.
  8. [8] Instituto Nacional de Estadstica e Informatica (Institute of Statistic and Informatics), “Censos Nacionales 2007,” 2007.
  9. [9] S. L. Beck and L. J. Ruff, “Great earthquakes and subduction along the Peru trench,” Physics of the Earth and Planetary Interiors, Vol.57, pp. 199-224, Nov. 1989.
  10. [10] T. Sagiya, S. Miyazaki, and T. Tada, “Continuous GPS array and present-day crustal deformation of Japan,” Pure and Applied Geophysics, Vol.157, pp. 2303-2322, 2000.
  11. [11] M. Hashimoto, M. Enomoto, and Y. Fukushima, “Coseismic Deformation from the 2008 Wenchuan, China, Earthquake Derived from ALOS/PALSAR Images,” Tectonophysics, Vol.491, pp. 59-71, Aug. 2010.
  12. [12] W. Liu and F. Yamazaki, “Detection of Crustal Movement From TerraSAR-X Intensity Images for the 2011 Tohoku, Japan Earthquake,” IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, Vol.10, No.1, pp. 199-203, 2013.
  13. [13] J. Kuroiwa, “Disaster Reduction, Living in harmony with nature,” Lima: Editorial NSG S.A.C, first edit ed., 2004.
  14. [14] N. Pulido, H. Tavera, H. Perfettini, M. Chlieh, Z. Aguilar, S. Aoi, S. Nakai, and F. Yamazaki, “Estimation of Slip Scenarios for Megathrust Earthquakes: A Case Study for Peru,” in Effects of Surface Geology on Seismic Motion, pp. 1-6, 2011.
  15. [15] K. Gagnon, C. D. Chadwell, and E. Norabuena, “Measuring the onset of locking in the Peru-Chile trench with GPS and acoustic measurements.,” Nature, Vol.434, pp. 205-8, Mar. 2005.
  16. [16] C. Jimenez, N. Moggiano, E. Mas, B. Adriano, S. Koshimura, Y. Fujii, and H. Yanagisawa, “Seismic Source of 1746 Callao Earthquake from Tsunami Numerical Modeling,” Journal of Disaster Research, Vol.8, No.2, pp. 266-273, 2013 (this number).
  17. [17] Y. Okada, “Surface deformation due to shear and tensile faults in a half-space,” Bulletin of the Seismological Society of America, Vol.75, No.4, pp. 1135-1154, 1985.
  18. [18] F. Imamura, “Review of the tsunami simulation with a finite difference method, LongWave Run-up Models,” World Scientifi, pp. 25-42, 1995.
  19. [19] S. J. Hong, “Study on the Two and Three Dimensional Numerical Analysis of Tsunamis near a coastal Area,” Ph.D thesis, Tohoku University, Japan, 2004.
  20. [20] T. Aburaya and F. Imamura, “The proposal of a tsunami runup simulation using combined equivalent roughness,” Annual Journal of Coastal Engineering, Japan Society of Civil Engineers, Vol.49, pp. 276-280, 2002.
  21. [21] S. Koshimura and T. Oie, “Developing fragility functions for tsunami damage estimation using numerical model and posttsunami data from Banda Aceh, Indonesia,” Coastal Engineering Journal, Vol.51, No.3, pp. 243-273, 2009.
  22. [22] A. Suppasri, S. Koshimura, and F. Imamura, “Developing tsunami fragility curves based on the satellite remote sensing and the numerical modeling of the 2004 Indian Ocean tsunami in Thailand,” Natural Hazards and Earth System Science, Vol.11, pp. 173-189, Jan. 2011.
  23. [23] A. Muhari, F. Imamura, S. Koshimura, and J. Post, “Examination of three practical run-up models for assessing tsunami impact on highly populated areas,” Natural Hazards and Earth System Science, Vol.11, pp. 3107-3123, Dec. 2011.
  24. [24] G. Gayer, S. Leschka, I. Nöhren, O. Larsen, and H. Günther, “Tsunami inundation modelling based on detailed roughness maps of densely populated areas,” Natural Hazards and Earth System Science, Vol.10, pp. 1679-1687, Aug. 2010.
  25. [25] B. Adriano, E. Mas, S. Koshimura, and Y. Fujii, “Remote Sensingbased Assessment of Tsunami Vulnerability in the coastal area of Lima , Peru,” in The 10th International Workshop on Remote Sensing for Disaster Management, 2012.
  26. [26] M. Kotani, F. Imamura, and N. Shuto, “Tsunami run-up simulation and damage estimation by using GIS,” in Proceedings of coastal engineering, JSCE 45, pp. 356-360, 1998.
  27. [27] S. Koshimura, T. Katada, H. O.Mofjeld, and Y. Kawata, “A method for estimating casualties due to the tsunami inundation flow,” Natural Hazards, Vol.39, pp. 265-274, Oct. 2006.
  28. [28] Ministerio de Salud del Peru, “Instituto Nacional de la Salud,” 2012.
  29. [29] H. Yeh, “Gender and Age Factors in Tsunami Casualties,” Natural Hazards Review, Vol.11, pp. 29-34, Feb. 2010.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Dec. 18, 2018