Topic:
Numerical Analysis of Liquefaction in a River Levee on Soft Cohesive Ground
Ryosuke Uzuoka and Keita Semba
Department of Civil and Environmental Engineering, The University of Tokushima, 2-1 Minamijyousanjima-cho, Tokushima 770-8506, Japan
- [1] Ministry of Land, Infrastructure, Transport and Tourism (MLIT), 2011,
http://www.mlit.go.jp/river/basic_info/english/touhoku.html [accessed Nov. 22, 2012] - [2] Y. Sasaki, H. Oshiki, and J. Nishikawa, “Embankment failure caused by the Kushiro-oki earthquake of January 15, 1993,” Performance of Ground and Soil Structure during Earthquakes, 13th International Conference on Soil Mechanics and Foundation Engineering, pp. 61-68, 1993.
- [3] M. Kaneko, Y. Sasaki, J. Nishikawa, M. Nagase, and K. Mamiya, “River dike failure in Japan by earthquakes in 1993,” 3rd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, pp. 495-498, 1995.
- [4] W. D. L. Finn and Y. Sasaki, “Simulation of response of the Kushiro river dike to the 1993 Kushiro-oki and 1994 Hokkaido Toho-oki earthquakes,” 14th International Conference on Soil Mechanics and Foundation Engineering, pp. 99-102, 1997.
- [5] R. Uzuoka and R. I. Borja, “Dynamics of unsaturated poroelastic solids at finite strain,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol.36, pp. 1535-1573, 2012.
- [6] R. de Boer, “Contemporary progress in porous media theory,” Applied Mechanics Reviews, Vol.53, No.12, pp. 323-369, 2000.
- [7] B. A. Schrefler, “Mechanics and thermodynamics of saturated/unsaturated porous materials and quantitative solutions,” Applied Mechanics Reviews, Vol.55, No.4, pp. 351-388, 2002.
- [8] D. Gallipoli, A. Gens, R. Sharma, and J. Vaunat, “An elastoplastic model for unsaturated soil incorporating the effects of suction and degree of saturation on mechanical behavior,” Geotechnique, Vol.53, No.1, pp. 123-135, 2003.
- [9] Y. Kohgo, M. Nakano, and T. Miyazaki, “Theoretical aspects of constitutive modeling for unsaturated soil,” Soils and Foundations, Vol.33, No.4, pp. 49-63, 1993.
- [10] X. S. Li, “Thermodynamics-based constitutive frame-work for unsaturated soils. 1: Theory,” Geotechnique, Vol.57, No.5, pp. 411-422, 2007.
- [11] D. Muir Wood, “Soil behaviour and critical state soil mechanics,” Cambridge University Press, 1991.
- [12] R. I. Borja and C. Tamagnini, “Cam-Clay plasticity. Part III: Extension of the infinitesimal model to include finite strains,” Computer Methods in Applied Mechanics and Engineering, Vol.155, pp. 73-95, 1998.
- [13] R. Uzuoka, M. Kazama, and N. Sento, “Soil-water-air coupled analysis on seepage and overtopping behavior of river levee,” 14th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, 2011.
- [14] R. I. Borja, C. Tamagnini, and A. Amorosi, “Coupling plasticity and energy-conserving elasticity models for clays,” Journal of Geotechnical and Geoenvironmental Engineering, Vol.123, No.10, pp. 948-957, 1997.
- [15] T. Mori, R. Uzuoka, T. Chiba, K. Kamiya, and M. Kazama, “Numerical prediction of seepage and seismic behavior of unsaturated fill slope,” Soils and Foundations, Vol.51, No.6, pp. 1075-1090, 2011.
- [16] P. J. Armstrong and C. O. Frederick, “A mathematical representation of the multiaxial Bauschinger effect,” C.E.G.B. Report RD/B/N731, Berkeley Nuclear Laboratories, Berkeley, UK, 1966.
- [17] J. C. Simo and R. L. Taylor, “Consistent tangent operators for rateindependent elastoplasticity,” Computer Methods in Applied Mechanics and Engineering, Vol.48, pp. 101-118, 1985.
- [18] National Research Institute for Earth Science and Disaster Prevention (NIED), 2011,
http://www.kik.bosai.go.jp/kik/ [accessed Nov. 22, 2012]
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.