Review:
Mouse Model of Abortion Induced by Brucella abortus Infection
Masahisa Watarai
The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
- [1] M. N. Seleem, S. M. Boyle, and N. Sriranganathan, “Brucellosis: a re-emerging zoonosis,” Veterinary Microbiology, Vol.140, pp. 392-298, 2010.
- [2] G. Pappas, “The changing Brucella ecology: novel reservoirs, new threats,” Int. J. of Antimicrobial Agents, Vol.36, Supplement 1, pp. S8-S11, 2010.
- [3] F. M. Enright, “The pathogenesis and pathibiology of Brucella infection in domestic animals,” In Animal Brucellosis, K. Nielsen, and J. R. Duncan (Eds.), pp. 301-320. CRC Press, Boca Raton, FL, USA, 1990.
- [4] L. Tobias, D. O. Cordes, and G. G. Schurig, “Placental pathology of the pregnant mouse inoculated with Brucella abortus strain 2308,” Veterinary Pathology, Vol.30 pp. 119-129, 1993.
- [5] R. A. Ugalde, “Intracellular lifestyle of Brucella spp. common genes with other animal pathogens, plant pathogens, and endosymbionts,” Microbes and Infection, Vol.1 pp. 1211-1219, 1999.
- [6] R. M. Roop 2nd, J. M. Gaines, E. S. Anderson, C. C. Caswell, and D. W. Martin, “Survival of the fittest: how Brucella strains adapt to their intracellular niche in the host,” Medical Microbiology and Immunology, Vol.198, pp. 221-238, 2009.
- [7] P. J. Christie and J. P. Vogel “Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells,” Trends in Microbiology, Vol.8, pp. 354-360, 2000.
- [8] R. M. Delrue, M. Martinez-Lorenzo, P. Lestrate, I. Danese, V. Bielarz, P. Mertens, X. De Bolle, A. Tibor, J. P. Gorvel, and J. J. Letesson, “Identification of Brucella spp. genes involved in intracellular trafficking,” Cellular Microbiology, Vol.3 pp. 487-497, 2001.
- [9] E. D. Weinberg, “Pregnancy-associated immune suppression: risks and mechanisms,” Microbial Pathogenesis, Vol.3, pp. 393-397, 1987.
- [10] M. Sano, M. Mitsuyama, Y. Watanabe, and K. Nomoto, “Impairment of T cell-mediated immunity to Listeria monocytogenes in pregnant mice,” Microbiology and Immunology, Vol.30, pp. 165-176, 1986.
- [11] Y. Zhan and C. Cheers, “Endogenous gamma interferon mediates resistance to Brucella abortus infection,” Infection and Immunity, Vol.61, pp. 4899-4901, 1993.
- [12] M. G. Stevens, G. W. Pugh Jr., and L. B. Tabatabai, “Effects of γ-interferon and indomethacin in preventing Brucella abortus infections in mice,” Infection and Immunity, Vol.60, pp. 4407-4409, 1992.
- [13] S. Kim, D. S. Lee, K. Watanabe, H. Furuoka, H. Suzuki, and M. Watarai, “Interferon-γ promotes abortion due to Brucella infection in pregnant mice,” BMC Microbiology, Vol.5, p. 22, 2005.
- [14] N. Bosseray and M. Plommet, “Brucella suis S2, Brucella melitensis Rev. 1 and Brucella abortus S19 living vaccines: residual virulence and immunity induced against three Brucella species challenge strains in mice,” Vaccine Vol.8 pp. 462-468, 1990.
- [15] H. E. Quinn, J. T. Ellis, and N. C. Smith, “Neospora caninum: a cause of immune-mediated failure of pregnancy?” Trends in Parasitology, Vol.18, pp. 391-394, 2002.
- [16] K. Watanabe, N. Iwai, M. Tachibana, H. Furuoka, H. Suzuki, and M. Watarai, “Regulated upon activation normal T-call expressed and secreted (RANTES) contributes to abortion caused by Brucella abortus infection in pregnant mice,” J. of Veterinary Medical Science, Vol.70, pp. 681-686, 2008.
- [17] R. Raghupathy, “Th1-type immunity is incompatible with successful pregnancy,” Immunology Today Vol.18, pp. 478-482, 1997.
- [18] H. Smith, A. E. Williams, J. H. Pearce, J. Keppie, P. W. Harris-Smith, R. B. Fitz-George, and K. Witt, “Foetal erythritol: a cause of the localization of Brucella abortus in bovine contagious abortion,” Nature Vol.193, pp. 47-49, 1962.
- [19] J. Keppie, A. E. Williams, K. Witt, and H. Smith, “The role of erythritol in tissue localization of the brucellae.,” British J. of Experimental Pathology, Vol.46, pp. 104-108, 1965.
- [20] M. J. Soares, B. M. Chapman, C. A. Rasmussen, G. Dai, T. Kamei, and K. E. Orwig, “Differentiation of trophoblast endocrine cells,” Placenta Vol.17, pp. 277-289, 1996.
- [21] J. C. Cross, “Genetic insights into trophoblast differentiation and placental morphogenesis,” Seminars in Cell and Developmental Biology, Vol. 11, pp. 105-113, 2000.
- [22] R. Ain, L. N. Canham, and M. J. Soares, “Gestation stagedependent intrauterine trophoblast cell invasion in the rat and mouse: novel endocrine phenotype and regulation,” Developmental Biology, Vol.260, pp. 176-190, 2003.
- [23] T. L. Thirkill, K. Lowe, H. Vedagiri, T. N. Blankenship, A. Barakat, and G. Douglas, “Macaque trophoblast migration is regulated by RANTES,” Experimental Cell Research, Vol.305, pp. 355-364, 2005.
- [24] R. Ramhorst, G. Gutierrez, A. Corigliano, G. Junovich, and L. Fainboim, “Implication of RANTES in the modulation of alloimmune response by progesterone during pregnancy,” American J. of Reproductive Immunology, Vol.57, pp. 147-152, 2007.
- [25] B. G. Dorner, A. Scheffold, M. S. Rolph, M. B. Huser, S. H. E. Kaufmann, A. Radbruch, I. E. A. Flesch, and R. A. Kroczek, “MIP-1α, MIP-1β, RANTES, and ATAC/lymphotactin function together with IFN-γ as type 1 cytokines,” Proc. of the National Academy of Sciences of the United States of America Vol.99, pp. 6181-6186, 2002.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.