JDR Vol.7 No.1 pp. 19-25
doi: 10.20965/jdr.2012.p0019


Tsunami Hazard Mitigation at Palabuhanratu, Indonesia

Yuichiro Tanioka*, Hamzah Latief**,
Haris Sunendar*, Aditya Riadi Gusman*,
and Shunichi Koshimura***

*Institute of Seismology and Volcanology, Hokkaido University, N10W8 Kita-ku, Sapporo 060-0810, Japan

**Department of Oceanography, Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132, Indonesia

***Disaster Control Research Center, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan

August 1, 2011
December 2, 2011
January 1, 2012
tsunami inundation map, tsunami numerical simulation, tsunami disaster mitigation

Several large earthquakes have recently occurred along the Sumatra-Java subduction zone, the 2004 great Sumatra-Andaman earthquake, the 2005 great Nias earthquake, the 2006 West Java tsunami earthquake, the 2007 great Bengkulu earthquake, and the 2010Mentawai tsunami earthquakes. Serious tsunami disasters were caused by the great underthrust earthquakes which ruptured the plate interface near the trench such as the 2004 Sumatra-Andaman, 2006West Java, 2010Mentawai earthquakes. At Palabuhanratu, maximum tsunami height distribution and inundation areas were computed from expected fault models located near the Java trench. The results shows that the most populated areas of Palabuhanratu would be severely damaged by the expected tsunami caused by the fault model of Mw 8.5. After discussing tsunami disaster mitigation measures with the local government, the result of tsunami inundation area in this study were used to decide tsunami evacuation areas and evacuation routes. The local government also installed tsunami evacuation sign boards near the coast.

Cite this article as:
Yuichiro Tanioka, Hamzah Latief,
Haris Sunendar, Aditya Riadi Gusman, and
and Shunichi Koshimura, “Tsunami Hazard Mitigation at Palabuhanratu, Indonesia,” J. Disaster Res., Vol.7, No.1, pp. 19-25, 2012.
Data files:
  1. [1] Y. Tanioka and S. Iwasaki, “Source processes of the 2004 great Sumatra earthquake estimated using tsunami waveform inversion,” Monthly Chikyu, Vol.56, pp. 19-24, 2006 (in Japanese).
  2. [2] K. Hirata, K. Satake, Y. Tanioka, T. Kuragano, Y. Hasegawa, Y. Hayashi, and N. Hamada, “The 2004 Indian Ocean tsunami: Tsunami source model from satellite altimetry,” Earth Planets Space, Vol.58, pp. 195-201, 2006.
  3. [3] Y. Fujii and K. Satake, “Tsunami source of the 2004 Sumatra-Andaman earthquake inferred from tide gauge and satellite data,” Bull. Seism. Soc. Am., Vol.97, S192-S207, 2007.
  4. [4] Y. J. Hsu, M. Simons, J. P. Avouac, J.Galetzka, K. Sieh,M. Chlieh, D. Natawidjaja, L. Prawirodirdjo, and Y. Bock, “Frictional afterslip following the 2005 NiasSimeulue earthquake, Sumatra,” Science, Vol.312, pp. 1921-1926, doi:10.1126/science.1126960, 2006.
  5. [5] J. C. Borrero, B. Mcadoo, B. Jaffe, L. Dengler, G. Gelfenbaum, B. Higman, R. Hidayat, A. Moore, W. Kongko, Lukijanto, R. Peters, G. Prasetya, V. Titov, and E. Yulianto, “Field Survey of the March 28, 2005 Nias-Simeulue Earthquake and Tsunami,” Pure Appl. Geophys. Vol.168, pp. 1075-1088, doi 10.1007/s00024-010-0218-6, 2011.
  6. [6] H.M. Fritz, W. Kongko, A. Moore, B. McAdoo, J. Goff, C. Harbitz, B. McAdoo, J. Goff, C. Harbitz, B. Uslu, N. Kalligeris, D. Suteja, K. Kalsum, V. Titov, A. Gusman, H. Latief, E. Santoso, S. Sujoko, D. Djulkarnaen, H. Sunendar, and C. Synolakis, “Extreme runup from the 17 July 2006 Java tsunami,” Geophys. Res. Lett., Vol.34, L12602, doi:101029/2007GL029404, 2007.
  7. [7] C. J. Ammon, H. Kanamori, T. Lay, and A. A. Velasco, “The 17 July 2006 Java tsunami earthquake,” Geophys. Res. Lett., Vol.233, L234308, doi:10.10239/2006GL028005, 2006
  8. [8] Y. Fujii and K. Satake, “Source of the July 2006 West Java tsunami estimated from tide gauge records,” Geophys. Res. Lett., Vol.33, L24317, doi:10.129/2006GL028049, 2006.
  9. [9] A. R. Gusman, Y. Tanioka, T. Kobayashi, H. Latief, andW. Pandoe, “Slip distribution of the 2007 Bengkulu earthquake inferred from tsunami waveforms and InSAR data,” J. Geophys. Res. Vol.115, B12316, doi:10.1029/2010JB007565, 2010.
  10. [10] J. C. Borrero, R. Weiss, E. A. Okal, R. Hidayat, D. Arcas Suranto, and V. V. Titov, “The tsunami of 2007 September 12, Bengkulu province, Sumatra, Indonesia: Post tsunami field survey and numerical modelling,” Geophys. J. Int., Vol.178, pp. 180-194.
  11. [11] T. Lay, C. J. Ammon, H. Kanamori, Y. Yamazaki, K. F. Cheung, and A. R. Hutko, “The 25 October 2010 Mentawai tsunami earthquake (Mw7.8) and the tsunami hazard presented by shallow megathrust ruptures,” Geophys. Res. Lett., Vol.38, L06302, doi:10.1029/2010GL046552, 2011.
  12. [12] R. E. Abercrombie, M. Antolik, K. Felzer, and G. Ekstrom, “The 1994 Java tsunami earthquake: Slip over a subducting seamount,” J. Geophys. Res., Vol.106, pp. 6595-6607, doi:10.1029/2000JB900403, 2001.
  13. [13] H. Kanamori, L. Rivera, and W. H. K. Lee, “Historical seismograms for unravelling a mysterious earthquake: The 1907 Sumatra Earthquake,” Geophys. J. Int., Vol.183, pp. 358-374, doi: 310.1111/j.1365-1246X.2010.04731.x, 2010.
  14. [14] Y. Okada, “Surface deformation due to shear and tensile faults in a half-space,” Bull. Seism. Soc. Am., Vol.75, pp. 1135-1154, 1985.
  15. [15] C. Goto, Y. Ogawa, N. Shuto, and F. Imamura, “Numerical method of tsunami simulation with the leap-frog scheme,” IUGG/IOC TIME project, IOC manual and guides, UNESCO, No.35, pp. 1-126, 1997.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Mar. 01, 2021