Development Report:
Approach to Environmental, Health and Safety Issues of Nanotechnology in Japan
Masahiro Takemura*, Go Yoshizawa**,
and Tatsujiro Suzuki***
*Information Analysis Office, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
**Policy Alternatives Research Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
***Japan Atomic Energy Commission, 3-1-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8970, Japan
- [1] Verein Deutscher Ingenieure, “Industrial application of nanomaterials-chances and risks, Technology analysis,” 2004.
- [2] Ministry of Health, Labor and Welfare, “Survey on safety measures against risks of nanomaterials,” 2008 (in Japanese).
- [3] Royal Society & Royal Academy of Engineering, “Nanoscience and nanotechnologies: opportunities and uncertainties,” 2004.
- [4] National Institute forMaterials Science, National Institute of Health Sciences, the National Institute for Environmental Studies, Nagoya University, “Communication on Topics of Nano Materials Impacts on Organisms and Environment,” 2007 (in Japanese).
- [5] National Institute of Advanced Industrial Science and Technology, National Institute for Materials Science, National Institute for Environmental Studies, National Institute of Health Sciences, “Research Project on Facilitation of Public Acceptance of Nanotechnology, “Summary and Policy Recommendations,” 2006 (in Japanese).
- [6] R. F. Service, “Nanotubes: the next asbestos?,” Science 281, p.941, 1998.
- [7] E. Oberdoerster, “Manufactured nanomaterials (Fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass,” Environmental Health Perspective, Vol.112, No.10, pp. 1058-1062, 2004.
- [8] Ministry of Economy, Trade and Industry, Japan Patent Office, “Trend of patent application technologies in FY2006, part 2: nanotechnology,” pp. 14-15, 2007 (in Japanese).
- [9] Royal Society, Science Council of Japan, “Report of UK Royal Society-Science Council of Japan joint workshop on potential health, environmental and societal impacts of nanotechnologies,” 2006.
- [10] Ministry of Economy, Trade and Industry, “Report on appropriate safety measures for nanomaterial manufacturer,” 2009 (in Japanese).
- [11] Meridian Institute, “Proceedings of International Dialogue on Responsible Research and Development of Nanotechnology,” 2004.
- [12] National Institute of Advanced Industrial Science and Technology, National Institute for Materials Science, “Report of 2nd International Dialogue on Responsible Research and Development of Nanotechnology,” 2006.
- [13] OECD Working Party on Manufactured Nanomaterials website,
http://www.oecd.org/about/0,3347,en_2649_37015404_1_1_1_1_37465,00.html [accessed: Feb. 2011] - [14] ISO TC-229 website,
http://www.oecd.org/about/0,3347,en_264937015404_1_1_1_1_37465,00.html [accessed: Feb. 2011] - [15] International Council on Nanotechnology website,
http://www.icon.rice.edu/about.cfm?doc_id=4379 [accessed: Feb. 2011] - [16] International Alliance for NanoEHS Harmonization website,
http://www.nanoehsalliance.org/ [accessed: Feb. 2011] - [17] A. Takagi, A. Hirose, T. Nishimura, et al., “Induction of mesothelioma in p53+/- mouse by intraperitoneal application of multiwall carbon nanotube,” Journal of Toxicological Science, Vol.33, No.1, pp. 105-116, 2008.
- [18] C. A. Poland, R. Duffin, I. Kinloch, et al., “Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a plot study,” Nature Nanotechnology, Vol.3, pp. 423-428, 2008.
- [19] National Institute of Advanced Industrial Science and Technology website,
http://www.aist-riss.jp/projects/nedo-nanorisk/index_e.html [accessed: Feb. 2011]
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.