Paper:
Collision Analysis of Container Drifted by Runup Tsunami Using Drift Collision Coupled Model
Gyeong-Seon Yeom*, Tomoaki Nakamura**, and Norimi Mizutani**
*Tsunami Research Center, Port and Airport Research Institute Nagase, Yokosuka, Kanagawa 239-0826, Japan
** Department of Civil Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- [1] R. Asakura, K. Iwase, T. Ikeya, M. Takao, K. Kaneto, N. Fujii, and M. Omori, “An experimental study on wave force acting on on-shore structures due to overflowing tsunamis,” Proc. of Coastal Engineering, JSCE, Vol.47, pp. 911-915, 2000 (in Japanese).
- [2] M. Ohmori, N. Fujii, O. Kyouya, M. Takao, T. Kaneto, and T. Ikeya, “Numerical simulation of water level, velocity and wave force overflowed on upright seawall by tsunamis,” Proc. of Coastal Engineering, JSCE, Vol.47, pp. 376-380, 2000 (in Japanese).
- [3] H. Matsutomi, “A practical formula for estimating impulsive force due to driftwoods and variation features of the impulsive force,” Journal of Hydraulic, Coastal and Environmental Engineering, JSCE, No.621, II-47, pp. 111-127, 1999 (in Japanese).
- [4] M. Ikeno and H. Tanaka, “Experimental study on impulse force of drift body and tsunami running up to land,” Proc. of Coastal Engineering, JSCE, Vol.50, pp. 721-725, 2003 (in Japanese).
- [5] S. Ushijima, O. Makino, and N. Toshikawa, “3D numerical prediction for transportation and entrapment of driftwood with T-type solid model,” Journal of Hydroscience and Hydraulic Engineering, Vol.27, No.1, pp. 11-21, 2009.
- [6] N. Mizutani, Y. Takagi, K. Shiraishi, S. Miyajima, and T. Tomita, “Study on wave force on a container on apron due to tsunamis and collision force of drifted container,” Annual Journal of Coastal Engineering, JSCE, Vol.52, pp. 741-745, 2005 (in Japanese).
- [7] G.-S. Yeom, T. Nakamura, A. Usami, and N. Mizutani, “Study on estimation of collision force of a drifted container using fluid-structure interaction analysis,” Annual Journal of Coastal Engineering, JSCE, Vol.55, pp. 281-285, 2008 (in Japanese).
- [8] K. Kumagai, K. Oda, and N. Fujii, “The field experiment for containers floating on sea surface and numerical simulation of container drift,” Annual Journal of Coastal Engineering, JSCE, Vol.55, pp. 271-275, 2008 (in Japanese).
- [9] N. Yoneyama, H. Nagashima, and K. Toda, “Development of a numerical analysis method for the drift behavior in tsunami,” Annual Journal of Coastal Engineering, JSCE, Vol.55, pp. 886-890, 2008 (in Japanese).
- [10] Y. Yuki, S. Takeuchi, and T. Kajishima, “Efficient immersed boundary method for strong interaction problem of arbitrary shape object with the self-induced flow,” Journal of Fluid Science and Technology, JSME, Vol.2, No.1, pp. 1-11, 2007.
- [11] T. Nakamura, Y. Kuramitsu, and N. Mizutani, “Tsunami scour around a square structure,” Coastal Engineering Journal, JSCE, Vol.50, No.2, pp. 209-246, 2008.
- [12] T. Kunugi, “MARS for multiphase calculation,” CFD Journal, Vol.9, No.1, IX-563, 2000.
- [13] A. A. Amsden and F. H. Harlow, “A simplified MAC technique for incompressible fluid flow calculation,” Journal of Computational Physics, Vol.6, pp. 322-325, 1970.
- [14] F. Xiao, T. Yabe, T. Ito, and M. Tajima, “An algorithm for simulating solid objects suspended in stratified flow,” Computer Physics Communications, Elsevier, Vol.102, pp. 147-160, 1997.
- [15] LSTC, “LS-DYNA theory manual,” Livermore Soft Technology Corporation, USA, 2006.
- [16] M. Souli, A. Ouahsine, and L. Lewin, “ALE formulation for fluid-structure interaction problems,” Computer Methods in Applied Mechanics and Engineering, Vol.190, pp. 659-675, 2000.
- [17] Japanese Industrial Standards Committee, “Freight containers for international trade — external dimensions and ratings,” JIS Z1614, 4p, 1994.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.