JDR Vol.3 No.4 pp. 270-275
doi: 10.20965/jdr.2008.p0270


First Steps in Understanding Caldera Forming Eruptions

Tsuneomi Kagiyama* and Yuichi Morita**

*Aso Volcanological Laboratory, Graduate School of Science, Kyoto University, Minami-Aso, Aso, Kumamoto 869-1404, Japan

**Earthquake Research Insitute, University of Tokyo, Yayoi, 1-1-1 Bunkyo-ku, Tokyo 113-0032, Japan

March 31, 2008
July 6, 2008
August 1, 2008
caldera forming eruption, diversity of eruption process, failed eruption, resistivity structure of volcano

Caldera forming eruptions are characterized by a large-scale and low frequency. To prepare for them, monitoring of volcanic activity is insufficient for practical evaluation. Volcanic activity generally involves two end members, one in which an eruption dominates and one in which geothermal activity dominates, as defined by the ease in magma ascent. Caldera forming eruptions tend to be prepared where magma stagnates easily. Research on stop of magma ascent and its accumulation is required to understand caldera forming eruptions.

Cite this article as:
Tsuneomi Kagiyama and Yuichi Morita, “First Steps in Understanding Caldera Forming Eruptions,” J. Disaster Res., Vol.3, No.4, pp. 270-275, 2008.
Data files:
  1. [1] Committee for Catalog of Quaternary Volcanoes in Japan, “Catalog of Quaternary Volcanoes in Japan,” The Volcanological Society of Japan, 1999.
  2. [2] C. G. Newhall and R. S. Punongbayan, “Fire and Mud — Eruptions and Lahars of Mount Pinatubo, Philippines,” Philippine Institute of Volcanology and Seismology and the University of Washington Press, pp. 1126, 1996.
  3. [3] N.Miyaji and M. Koyama, “Recent studies on the 1707 (Hoei) eruption of Fuji volcano,” Fuji Volcano, Yamanashi Institute of Environmental Sciences, pp. 339-348, 2007.
  4. [4] K. Ishihara, “Research on theMechanism of Volcanic Eruption with Geophysical Observation,” Bull. Volcanol. Soc. Jpn, Ser. 2, 42, pp. 445-458, 1997.
  5. [5] Y. Ohki, S. Aramaki, K. Nakamura, and K. Hakamata, “Volcanoes of Hakone, Izu and Oshima,” Bull. Hot Spring Res. Inst. Kanagawa Prefecture, 9, pp. 1-88, 1978.
  6. [6] T. Kagiyama, “Thermal activities of volcanoes in the Japan Arc — A nature and geological meanings,” Arc Volcanism: Physics and Tectonics, edited by D. Shimozuru and I. Yokoyama, Terra Pub. pp. 13-27, 1983.
  7. [7] K. Nakamura, “Volcanoes as possible indicators of tectonic stress orientation,” Jour. Volcanol. Geotherm. Res., 2, pp. 1-16, 1977.
  8. [8] K. Ishihara, “Pressure sources and induced ground deformation associated with explosive eruptions at an andesitic volcano: Sakurajima volcano, Japan,” Magma Transport and Storage edited by M . P . Ryan, John Wiley & Sons, pp. 335-356, 1990.
  9. [9] H. Hamaguchi, “Progress in the Sixth National Project for Prediction of Volcanic Eruption,” Bull. Volcanol. Soc. Jpn, Ser. 2, 48, pp. 79-86, 2003.
  10. [10] T. Minakami, S. Utibori, S. Hiraga, T. Miyazaki, N. Gyoda, and T. Utunomiya, “Seismometrical studies of Volcano Asama, Part 1,” Bull. Earthq. Res. Inst., 48, pp. 235-301, 1970.
  11. [11] D. Shimozuru, S. Uchibori, N. Gyoda, E. Koyama, T. Miyazaki, T. Matsumoto, N. Osada, and H. Terao, “The 1973 Explosive Activity of Asama Volcano. — General Description of Volcanic and Seismic Events — ,” Bull. Earthq. Res. Inst., 50, pp. 115-151, 1975.
  12. [12] D. Shimozuru, N. Gyoda, T. Kagiyama, E. Koyama, N. Hagiwara, and H. Tsuji, “The 1982 Eruption of Asama Volcano,” Bull. Earthq. Res. Inst., 57, pp. 537-559, 1982.
  13. [13] S. Aramaki and Y. Hayakawa, “Ash-fall during the April 26, 1982 Eruption of Asama Volcano,” Bull Volcanol. Soc. Jpn. Ser. 2, 27, pp. 203-215, 1982.
  14. [14] T. Kagiyama, N. Gyoda, E. Koyama, and H. Tsuji, “Precursory phenomena of the small size eruption of Asama Volcano and its geological background,” Rep. Forecast of volcanic hazards by comparative research on geophysical state of volcanic body, pp. 92-101, 1985.
  15. [15] M. Murakami, “Magma Plumbing System of the Asama Volcano Inferred from Continuous Measurements of GPS,” Bull. Volcanol. Soc. Jpn. Ser. 2, 50, pp. 347-361, 2005.
  16. [16] M. Yoshimoto, T. Shimano, S. Nakada, E. Koyama, H. Tsuji, A. Iida, M. Kurokawa, Y. Okayama, M. Nokawa, T. Kaneko, H. Hoshizumi, Y. Ishizuka, R. Furukawa, K. Nogami, S. Onizawa, K. Niihori, T. Sugimoto, and M. Nagai, “Mass Estimation and Characteristics of Ejecta from the 2004 Eruption of Asama Volcano,” Bull. Volcanol. Soc. Jpn. Ser. 2, 50, pp. 519-533, 2005.
  17. [17] T. Kagiyama and E. Koyama, “Time variation of volcanic plume related with the eruption of Asama Volcano in 2004,” Bull. Volcanol. Soc. Jpn Ser. 2, 51, pp. 75-89, 2006.
  18. [18] T. Kagiyama, “Future view of the research on prediction of volcanic eruption and structure of volcano,” Butsuri-tansa, 59, pp. 539-548, 2006.
  19. [19] S. Tanaka, H. Hamaguchi, T. Nishimura, T. Yamawaki, S. Ueki, H. Nakamichi, T. Tsutsui, H. Miyamachi, N. Matsuwo, J. Oikawa, T. Ohminato, K. Miyaoka, S. Onizawa, T. Mori, and K. Aizawa, “Three dimensional P-wave velocity structure of Iwate volcano, Japan from active seismic survey,” Geophys. Res. Lett., 29, 10, 10.1029/2002GL014983, 2002.
  20. [20] Y. Ikeda, Y. Katsui, M. Nakagawa, S. Kawachi, T. Watanabe, N. Fujibayashi, T. Shibata, and H. Kagami, “Petrology of the 1988-89 Essential Ejecta and Associated Glassy Rocks of Tokachi-dake volcano in Central Hokkaido,” Japan. Bull. Volcanol. Soc. Japan, Ser. 2, 35, pp. 147-162, 1990.
  21. [21] Y.Morita, S. Nakao, and Y. Hayashi, “A quantitative approach to the dike intrusion process inferred from a joint analysis of geodetic and seismological data for the 1998 earthquake swarm off the east coast of Izu Peninsula,” central Japan. J. Geophys. Res., 111, B06208, doi:10.1029/2005JB003860, 2006.
  22. [22] M. Nakagawa and K. Ito, “Magma plumbing system of Iwate volcano, its spatial-temporal variation and situation during the last 3000 years,” Programme and abstracts the Volcanological Society of Japan 2000, A58, 2000.
  23. [23] S. Nakada, H. Shimizu, and K. Ohta, “Overview of the 1990-1995 eruption at Unzen Volcano,” J. Volcanol. Geotherm. Res. 89, pp. 1-22, 1999.
  24. [24] T. Kagiyama, H. Utada, and T. Yamamoto, “Magma ascent beneath Unzen Volcano, SW Japan, deduced from the electrical resistivity structure,” J. Volcanol. Geotherm. Res., 89, pp. 35-42, 1999.
  25. [25] T. Kagiyama, “Experiment on volcanic structure and magma supply system for prediction of volcanic eruption”, Bull. Volcanol. Soc. Jpn. Ser. 2, 42, pp. 115-118, 1997.
  26. [26] J. Ossaka, M. Yamamoto, M. Kurosaki, M. Yoshida, K. Nogami, and J. Hirabayashi, “Change of Chemical Compositions of Fumarolic gases at Unzen Spa on the 1990-1995 Eruption of Fugendake,” J. Balneological Soc. Japan, 47, pp. 22-28, 1997.
  27. [27] S. Wahyu, T. Kagiyama, W. Kanda, H. Munekane, T. Hashimoto, Y. Tanaka, H. Utada, and M. Utsugi, “Resistivity structure of Unzen Volcano derived from Time Domain Electromagnetic (TDEM) survey,” J. Volcanol. Geotherm. Res., doi:10.1016/j.jvolgeores.2008.03.033 (in press).
  28. [28] K. Umakoshi, H. Shimizu, and N. Matsuwo, “Volcano-tectonic seismicity at Unzen Volcano, Japan, 1985-1999,” J. Volcanol. Geotherm. Res., 112, pp. 117-131, 2001.
  29. [29] K. Ohta, “Observation of volcanic-hot spring waters in the Unzen Volcano (II),” The Science Reports of the Shimabara Volcano Observatory, the Faculty of Science, Kyushu Universty, 11, pp. 13-25, 1977.
  30. [30] T. Fujii, “Magmatology of Fuji Volcano,” Fuji Volcano, Yamanashi Institute of Environmental Sciences, pp. 233-244, 2007.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Mar. 05, 2021