single-dr.php

JDR Vol.3 No.1 pp. 25-32
(2008)
doi: 10.20965/jdr.2008.p0025

Review:

Maximum Potential Intensity of Tropical Cyclones Derived from Numerical Experiments Using the Community Climate System Model (CCSM3)

Junichi Tsutsui

Central Research Institute of Electric Power Industry, 1646 Abiko, Chiba 270-1194, Japan

Received:
October 23, 2007
Accepted:
January 31, 2008
Published:
February 1, 2008
Keywords:
tropical cyclone, maximum potential intensity, general circulation model, anthropogenic climate change, western North Pacific basin
Abstract
There is a theory for estimating the maximum potential intensity (MPI) of tropical cyclones (TCs) from large-scale thermodynamic environment. The present study investigates sea surface temperature (SST) and the vertical profile of upper-air temperature simulated using the Community Climate System Model (CCSM3) to assess possible near-future MPI changes focusing on the western North Pacific.
The MPI derived from the simulated thermodynamic environment for the present climate is generally reasonable in terms of geographical distribution and its relation to SST. Significant MPI changes in 2010 to 2029 relative to 1980 to 1999 are found in the tropics, where the central pressure fall increases by 5-7 hPa, or 6-8%, on average. Associated thermodynamic changes include SST warming of 0.6-0.7AC and amplification of upper tropospheric warming at a factor of two to three. This greater warming in the upper troposphere is important in suppressing a rapid increase in the MPI. Although the northward expansion of TC development area is marginal, greater thermodynamic change in the middle latitudes suggests an impact on the lifecycle of a TC moving into this region.
Cite this article as:
J. Tsutsui, “Maximum Potential Intensity of Tropical Cyclones Derived from Numerical Experiments Using the Community Climate System Model (CCSM3),” J. Disaster Res., Vol.3 No.1, pp. 25-32, 2008.
Data files:
References
  1. [1] WMO, “Statement on tropical cyclones and climate change,” Prepared by participants of the WMO International Workshop on Tropical Cyclones, IWTC-6, San Jose, Costa Rica, November, 2006.
    http://www.wmo.ch/web/arep/pressreleases/2006/iwtcsummary.pdf
  2. [2] J. L. McBride, “Tropical cyclone formation,” In R. L. Elsberry (Ed.), “Global perspectives on tropical cyclones,” WMO/TDNo. 693, TCP-38 in World Meteorological Organization Technical Document, World Meteorological Organization, pp. 63-105, 1995.
  3. [3] S. Solomon, D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, J. Henry LeRoy Miller, and Z. Chen (Eds.), “Climate Change 2007 The Physical Science Basis,” Cambridge University Press, 2007.
  4. [4] K. Emanuel, “Increasing destructiveness of tropical cyclones over the past 30 years,” Nature, No.436, pp. 686-688, 2005.
  5. [5] P. J.Webster, G. J. Holland, J. A. Curry, and H.-R. Chang, “Changes in tropical cyclone number, duration, and intensity in a warming environment,” Science, No.309, pp. 1844-1846, 2005.
  6. [6] J. A. Curry, P. J. Webster, and G. J. Holland, “Mixing politics and science in testing the hypothesis that greenhouse warming is causing a global increase in hurricane intensity,” Bull. Amer. Meteor. Soc., No.87, pp. 1025-1037, 2006.
  7. [7] K. A. Emanuel, “The dependence of hurricane intensity on climate,” Nature, No.326, pp. 483-485, April, 1987.
  8. [8] G. J. Holland, “The maximum potential intensity of tropical cyclones,” J. Atmos. Sci., No.54, pp. 2519-2541, 1997.
  9. [9] W. M. Gray, “Hurricanes: Their formation, structure and likely role in the tropical circulation,” In D. B. Shaw (Ed.), “Meteorology over the tropical oceans,” Roy. Meteor. Soc., James Glaisher House, pp. 155-218, Grenville Place, Bracknell, Berkshire RG12 1BX, 1979.
  10. [10] M. DeMaria and J. Kaplan, “Sea surface temperature and the maximum intensity of Atlantic tropical cyclones,” J. Climate, No.7, pp. 1324-1334, 1994.
  11. [11] A. Henderson-Sellers, H. Zhang, G. Berz, K. Emanuel,W. Gray, C. Landsea, G. Holland, J. Lighthill, S. -L. Shieh, P. Webster, and K. McGuffie, “Tropical cyclones and global climate change: A post-IPCC assessment,” Bull. Amer. Meteor. Soc., No.79, pp. 19-38, 1998.
  12. [12] K. Oouchi, J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda, “Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses,” J. Meteor. Soc. Japan, No.84, pp. 259-276, 2006.
  13. [13] G. D. Atkinson and C. R. Holliday, “Tropical cyclone minimum sea level pressure/maximum sustained wind relationship for the estern North Pacific,” Mon.Wea. Rev., No.105, pp. 421-427, 1977.
  14. [14] T. R. Knutson and R. E. Tuleya, “Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization,” J. Climate, No.17, pp. 3477-3495, 2004.
  15. [15] H. Kamahori, N. Yamazaki, N. Mannoji, and K. Takahashi, “Variability in intense tropical cyclone days in the western North Pacific,” SOLA, No.2, pp. 104-107, 2006.
  16. [16] W. D. Collins, C. M. Bitz, M. L. Blackmon, G. B. Bonan, C. S. Bretherton, J. A. Carton, P. Chang, S. C. Doney, J. J. Hack, T. B. Henderson, J. T. Kiehl, W. G. Large, D. S. McKenna, B. D. Santer, and R. D. Smith, “The Community Climate System Model version 3 (CCSM3),” J. Climate, No.19, pp. 2122-2143, 2006.
  17. [17] J. Tsutsui, Y. Yoshida, D. -H. Kim, H. Kitabata, K. Nishizawa, N. Nakashiki, and K. Maruyama, “Long-term climate response to stabilized and overshoot anthropogenic forcings beyond the 21st century,” Climate Dyn., No.28, pp. 199-214, 2007.
  18. [18] N. Nakicenovic and R. Swart (Eds.), “Emissions scenarios. A special report of working group III of the Intergovernmental Panel on Climate Change,” Cambridge University Press, UK, 2000.
  19. [19] K. Onogi, J. Tsutsui, H. Koide, M. Sakamoto, S. Kobayashi, H. Hatsushika, T. Matsumoto, N. Yamazaki, H. Kamahori, K. Takahashi, S. Kadokura, K.Wada, K. Kato, R. Oyama, T. Ose, N. Mannoji, and R. Taira, “The JRA-25 reanalysis,” J. Meteor. Soc. Japan, No.85, pp. 369-432, 2007.
  20. [20] Japan Meteorological Agency, “Outline of the operational numerical weather prediction at the Japan Meteorological Agency,” Appendix to WMO numerical weather prediction progress report, 2002.
  21. [21] M. Ishii, A. Shouji, S. Sugimoto, and T. Matsumoto, “Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection,” Int. J. Climatol., No.25, pp. 865-879, 2005.
  22. [22] C. Deser, A. Capotondi, R. Saravanan, and A. S. Phillips, “Tropical Pacific and Atlantic climate variability in CCSM3,” J. Climate, No.19, pp. 2451-2481, 2006.
  23. [23] B. D. Santer, T. M. L. Wigley, C. Mears, F. J. Wentz, S. A. Klein, D. J. Seidel, K. E. Taylor, P. W. Thorne, M. F. Wehner, P. J. Gleckler, J. S. Boyle,W. D. Collins, K.W. Dixon, C. Doutriaux, M. Free, Q. Fu, J. E. Hansen, G. S. Jones, R. Ruedy, T. R. Karl, J. R. Lanzante, G. A. Meehl, V. Ramaswamy, G. Russell, and G. A. Schmidt, “Amplification of surface temperature trends and variability in the tropical atmosphere,” Science, No.309, pp. 1551-1556, 2005.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 05, 2024