single-jc.php

JACIII Vol.28 No.3 pp. 562-572
doi: 10.20965/jaciii.2024.p0562
(2024)

Research Paper:

Research on Efficient Asymmetric Attention Module for Real-Time Semantic Segmentation Networks in Urban Scenes

Xu Su* ORCID Icon, Lihong Li*,**,† ORCID Icon, Jiejie Xiao* ORCID Icon, and Pengtao Wang* ORCID Icon

*School of Information and Electrical Engineering, Hebei University of Engineering
No.19 Taiji Road, Handan, Hebei 056038, China

**Hebei Key Laboratory of Security & Protection Information Sensing and Processing
No.19 Taiji Road, Handan, Hebei 056038, China

Corresponding author

Received:
June 29, 2023
Accepted:
January 12, 2024
Published:
May 20, 2024
Keywords:
semantic segmentation, real-time, convolutional neural network, encoder–decoder network
Abstract

Currently, numerous high-precision models have been proposed for semantic segmentation, but the model parameters are large and the segmentation speed is slow. Real-time semantic segmentation for urban scenes necessitates a balance between accuracy, inference speed, and model size. In this paper, we present an efficient solution to this challenge, efficient asymmetric attention module net (EAAMNet) for the semantic segmentation of urban scenes, which adopts an asymmetric encoder–decoder structure. The encoder part of the network utilizes an efficient asymmetric attention module to form the network backbone. In the decoding part, we propose a lightweight multi-feature fusion decoder that can maintain good segmentation accuracy with a small number of parameters. Our extensive evaluations demonstrate that EAAMNet achieves a favorable equilibrium between segmentation efficiency, model parameters, and segmentation accuracy, rendering it highly suitable for real-time semantic segmentation in urban scenes. Remarkably, EAAMNet attains a 73.31% mIoU at 128 fps on Cityscapes and a 69.32% mIoU at 141 fps on CamVid without any pre-training. Compared to state-of-the-art models, our approach not only matches their model parameters but also enhances accuracy and increases speed.

EAAMNet for real-time semantic segmentation

EAAMNet for real-time semantic segmentation

Cite this article as:
X. Su, L. Li, J. Xiao, and P. Wang, “Research on Efficient Asymmetric Attention Module for Real-Time Semantic Segmentation Networks in Urban Scenes,” J. Adv. Comput. Intell. Intell. Inform., Vol.28 No.3, pp. 562-572, 2024.
Data files:
References
  1. [1] J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Networks for Semantic Segmentation,” Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, pp. 3431-3440, 2015. https://doi.org/10.1109/CVPR.2015.7298965
  2. [2] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid Scene Parsing Network,” Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, pp. 2881-2890, 2017.
  3. [3] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” 18th Int. Conf. on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015), pp. 234-241, 2015. https://doi.org/10.1007/978-3-319-24574-4_28
  4. [4] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs,” arXiv:1412.7062, 2014. https://doi.org/10.48550/arXiv.1412.7062
  5. [5] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.40, No.4, pp. 834-848, 2017. https://doi.org/10.1109/TPAMI.2017.2699184
  6. [6] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking Atrous Convolution for Semantic Image Segmentation,” arXiv:1706.05587, 2017. https://doi.org/10.48550/arXiv.1706.05587
  7. [7] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation,” Proc. of the European Conf. on Computer Vision (ECCV2018), pp. 801-818, 2018. https://doi.org/10.1007/978-3-030-01234-2_49
  8. [8] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation,” arXiv:1606.02147, 2016. https://doi.org/10.48550/arXiv.1606.02147
  9. [9] W. Han, Z. Zhang, Y. Zhang, J. Yu, C.-C. Chiu, J. Qin, A. Gulati, R. Pang, and Y. Wu, “ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context,” arXiv:2005.03191, 2020. https://doi.org/10.48550/arXiv.2005.03191
  10. [10] T. Emara, H. E. A. E. Munim, and H. M. Abbas, “LiteSeg: A Novel Lightweight ConvNet for Semantic Segmentation,” 2019 Digital Image Computing: Techniques and Applications (DICTA), 2019. https://doi.org/10.1109/DICTA47822.2019.8945975
  11. [11] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, “ICNet for Real-Time Semantic Segmentation on High-Resolution Images,” Proc. of the European Conf. on Computer Vision (ECCV2018), pp. 405-420, 2018. https://doi.org/10.1007/978-3-030-01219-9_25
  12. [12] F. Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions,” 2017 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 1800-1807, 2017. https://doi.org/10.1109/CVPR.2017.195
  13. [13] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” arXiv:1704.04861, 2017. https://doi.org/10.48550/arXiv.1704.04861
  14. [14] G. Li and J. Kim, “DABNet: Depth-Wise Asymmetric Bottleneck for Real-Time Semantic Segmentation,” 30th British Machine Vision Conf. 2019 (BMVC), 2019.
  15. [15] Y. Wang, Q. Zhou, J. Liu, J. Xiong, G. Gao, X. Wu, and L. J. Latecki, “LEDnet: A Lightweight Encoder-Decoder Network for Real-Time Semantic Segmentation,” 2019 IEEE Int. Conf. on Image Processing (ICIP), pp. 1860-1864, 2019. https://doi.org/10.1109/ICIP.2019.8803154
  16. [16] M. Yang, K. Yu, C. Zhang, Z. Li, and K. Yang, “DenseASPP for Semantic Segmentation in Street Scenes,” 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition, pp. 3684-3692, 2018. https://doi.org/10.1109/CVPR.2018.00388
  17. [17] M. Lu, Z. Chen, Q. M. J. Wu, N. Wang, X. Rong, and X. Yan, “FRNet: Factorized and Regular Blocks Network for Semantic Segmentation in Road Scene,” IEEE Trans. on Intelligent Transportation Systems, Vol.23, No.4, pp. 3522-3530, 2020. https://doi.org/10.1109/TITS.2020.3037727
  18. [18] M. A. M. Elhassan, C. Huang, C. Yang, and T. L. Munea, “DSANet: Dilated Spatial Attention for Real-Time Semantic Segmentation in Urban Street Scenes,” Expert Systems with Applications, Vol.183, Article No.115090, 2021. https://doi.org/10.1016/j.eswa.2021.115090
  19. [19] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “BiSeNet: Bilateral Segmentation Network for Real-Time Semantic Segmentation,” Proc. of the European Conf. on Computer Vision, pp. 325-341, 2018. https://doi.org/10.1007/978-3-030-01261-8_20
  20. [20] S. Mehta, M. Rastegari, A. Caspi, L. Shapiro, and H. Hajishirzi, “ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation,” Proc. of the European Conf. on Computer Vision, pp. 552-568, 2018.
  21. [21] E. Romera, J. M. Álvarez, L. M. Bergasa, and R. Arroyo, “ERFNet: Efficient Residual Factorized ConvNet for Real-Time Semantic Segmentation,” IEEE Trans. on Intelligent Transportation Systems, Vol.19, No.1, pp. 263-272, 2017. https://doi.org/10.1109/TITS.2017.2750080
  22. [22] Q. Yi, G. Dai, M. Shi, Z. Huang, and A. Luo, “ELANet: Effective Lightweight Attention-Guided Network for Real-Time Semantic Segmentation,” Neural Processing Letters, Vol.55, pp. 6425-6442, 2023. https://doi.org/10.1007/s11063-023-11145-z
  23. [23] J. Liu, Q. Zhou, Y. Qiang, B. Kang, X. Wu, and B. Zheng, “FDDWNet: A Lightweight Convolutional Neural Network for Real-Time Semantic Segmentation,” Proc. of the 2020 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP2020), pp. 2373-2377, 2020. https://doi.org/10.1109/ICASSP40776.2020.9053838
  24. [24] J. Liu, F. Zhang, Z. Zhou, and J. Wang, “BFMNet: Bilateral Feature Fusion Network with Multi-Scale Context Aggregation for Real-Time Semantic Segmentation,” Neurocomputing, Vol.521, pp. 27-40, 2023. https://doi.org/10.1016/j.neucom.2022.11.084
  25. [25] M. Zhuang, X. Zhong, D. Gu, L. Feng, X. Zhong, and H. Hu, “LRDNet: A Lightweight and Efficient Network with Refined Dual Attention Decorder for Real-Time Semantic Segmentation,” Neurocomputing, Vol.459, pp. 349-360, 2021. https://doi.org/10.1016/j.neucom.2021.07.019
  26. [26] J. Hu, L. Shen, and G. Sun, “Squeeze-and-Excitation Networks,” Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, pp. 7132-7141, 2018. https://doi.org/10.1109/CVPR.2018.00745
  27. [27] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “CBAM: Convolutional Block Attention Module,” Proc. of the European Conf. on Computer Vision, pp. 3-19, 2018.
  28. [28] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, “Dual Attention Network for Scene Segmentation,” 2019 IEEE/CVF Conf. on Computer Vision and Pattern Recognition, pp. 3146-3154, 2019. https://doi.org/10.1109/CVPR.2019.00326
  29. [29] Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei, and W. Liu, “CCNet: Criss-Cross Attention for Semantic Segmentation,” 2019 IEEE/CVF Int. Conf. on Computer Vision, pp. 603-612, 2019. https://doi.org/10.1109/ICCV.2019.00069
  30. [30] Q. Wang, X. Wang, L. Huang, C. Huang, Y. Wei, and W. Liu, “ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks,” Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, pp. 11534-11542, 2020.
  31. [31] Y. Yuan, L. Huang, J. Guo, C. Zhang, X. Chen, and J. Wang, “OCNet: Object Context Network for Scene Parsing,” arXiv:1809.00916, 2018. https://doi.org/10.48550/arXiv.1809.00916
  32. [32] X. Hao, X. Hao, Y. Zhang, Y. Li, and C. Wu, “Real-Time Semantic Segmentation with Weighted Factorized-Depthwise Convolution,” Image and Vision Computing, Vol.114, Article No.104269, 2021. https://doi.org/10.1016/j.imavis.2021.104269
  33. [33] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.39, No.12, pp. 2481-2495, 2017. https://doi.org/10.1109/TPAMI.2016.2644615
  34. [34] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices,” Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, pp. 6848-6856, 2018. https://doi.org/10.1109/CVPR.2018.00716
  35. [35] Q.-L. Zhang and Y.-B. Yang, “SA-Net: Shuffle Attention for Deep Convolutional Neural Networks,” Proc. of the 2021 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP2021), pp. 2235-2239, 2021.
  36. [36] H. Wang, X. Jiang, H. Ren, Y. Hu, and S. Bai, “SwiftNet: Real-Time Video Object Segmentation,” Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, pp. 1296-1305, 2021.
  37. [37] H. Li, P. Xiong, H. Fan, and J. Sun, “DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation,” Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, pp. 9522-9531, 2019.
  38. [38] C. Yu, C. Gao, J. Wang, G. Yu, C. Shen, and N. Sang, “BiSeNet V2: Bilateral Network with Guided Aggregation for Real-Time Semantic Segmentation,” Int. J. of Computer Vision, Vol.129, pp. 3051-3068, 2021. https://doi.org/10.1007/s11263-021-01515-2
  39. [39] R. P. K. Poudel, S. Liwicki, and R. Cipolla, “Fast-SCNN: Fast Semantic Segmentation Network,” arXiv:1902.04502, 2019. https://doi.org/10.48550/arXiv.1902.04502
  40. [40] G. Gao, G. Xu, J. Li, Y. Yu, H. Lu, and J. Yang, “FBSNet: A Fast Bilateral Symmetrical Network for Real-Time Semantic Segmentation,” IEEE Trans. on Multimedia, Vol.25, pp. 3273-3283, 2023. https://doi.org/10.1109/TMM.2022.3157995
  41. [41] G. Gao, G. Xu, Y. Yu, J. Xie, J. Yang, and D. Yue, “MSCFNet: A Lightweight Network with Multi-Scale Context Fusion for Real-Time Semantic Segmentation,” IEEE Trans. on Intelligent Transportation Systems, Vol.23, No.12, pp. 25489-25499, 2021. https://doi.org/10.1109/TITS.2021.3098355
  42. [42] Q. Tang, Y. Chen, M. Zhao, S. Min, and W. Jiang, “DAABnet: Depth-Wise Asymmetric Attention Bottleneck for Real-Time Semantic Segmentation,” Preprint, 2023.
  43. [43] Y. Dai, J. Wang, J. Li, and J. Li, “PDBNet: Parallel Dual Branch Network for Real-Time Semantic Segmentation,” Int. J. of Control, Automation and Systems, Vol.20, No.8, pp. 2702-2711, 2022. https://doi.org/10.1007/s12555-021-0430-4
  44. [44] T. Singha, D.-S. Pham, and A. Krishna, “SDBNet: Lightweight Real-Time Semantic Segmentation Using Short-Term Dense Bottleneck,” Proc. of the 2022 Int. Conf. on Digital Image Computing: Techniques and Applications (DICTA), 2022. https://doi.org/10.1109/DICTA56598.2022.10034634
  45. [45] M. Shi, J. Shen, Q. Yi, J. Weng, Z. Huang, A. Luo, and Y. Zhou, “LMFFN: A Well-Balanced Lightweight Network for Fast and Accurate Semantic Segmentation,” IEEE Trans. on Neural Networks and Learning Systems, Vol.34, No.6, pp. 3205-3219, 2022. https://doi.org/10.1109/TNNLS.2022.3176493
  46. [46] A. Kherraki, M. Maqbool, and R. E. Ouazzani, “Efficient Lightweight Residual Network for Real-Time Road Semantic Segmentation,” IAES Int. J. of Artificial Intelligence, Vol.12, No.1, pp. 394-401, 2023. http://doi.org/10.11591/ijai.v12.i1.pp394-401

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Dec. 13, 2024