Paper:
A Tradeoff-Based Interactive Multi-Objective Optimization Method Driven by Evolutionary Algorithms
Lu Chen*, Bin Xin*,**,***,†, and Jie Chen**,***
*School of Automation, Beijing Institute of Technology
No.5 Zhongguancun South Street, Haidian District, Beijing, China
**Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology
No.5 Zhongguancun South Street, Haidian District, Beijing, China
***State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology
No.5 Zhongguancun South Street, Haidian District, Beijing, China
†Corresponding author
- [1] C. L. Hwang and A. S. M. Masud, “Multiple objective decision making methods and applications,” Springer, Berlin, 1979.
- [2] K. Miettinen, “Nonlinear multiobjective optimization. Springer, 1999.
- [3] J. B. Yang, “Gradient projection and local region search for multiobjective optimisation,” European J. of Operational Research, Vol.112, No.2, pp. 432-459, 1999.
- [4] J. B. Yang and D. Li, “Normal vector identification and interactive tradeoff analysis using minimax formulation in multiobjective optimization,” IEEE Trans. on Systems, Man, and Cybernetics- Part A: Systems and Humans, Vol.32, No.3, pp. 305-319, 2002.
- [5] M. Luque, J. B. Yang, and B. Y. H. Wong, “PROJECT method for multiobjective optimization based on gradient projection and reference points,” IEEE Trans. on Systems, Man and Cybernetics-Part A: Systems and Humans, Vol.39, No.4, pp. 864-879, 2009.
- [6] J. Branke, K. Deb, K. Miettinen, and R. Słowiński, “Multiobjective optimization: interactive and evolutionary approaches,” Springer, 2008.
- [7] K. Miettinen, P. Eskelinen, F. Ruiz, and M. Luque, “NAUTILUS method: An interactive technique in multiobjective optimization based on the nadir point,” European J. of Operational Research, Vol.206, No.2, pp. 426-434, 2010.
- [8] K. Deb, A. Sinha, P. J. Korhonen, and J. Wallenius, “An interactive evolutionary multiobjective optimization method based on progressively approximated value functions,” IEEE Trans. on Evolutionary Computation, Vol.14, No.5, pp. 723-739, 2010.
- [9] A. Sinha, K. Deb, P. Korhonen, and J. Wallenius, “Progressively interactive evolutionary multi-objective optimization method using generalized polynomial value functions,” IEEE Congress on Evolutionary Computation, pp. 1-8, 2010.
- [10] K. Sindhya, A. B. Ruiz, and K. Miettinen, “A preference based interactive evolutionary algorithm for multi-objective optimization: PIE,” Evolutionary Multi-Criterion Optimization, Springer, 2011.
- [11] A. B. Ruiz, M. Luque, K. Miettinen, and R. Saborido, “An interactive evolutionary multiobjective optimization method: Interactive WASF-GA,” Evolutionary Multi-Criterion Optimization, Springer, 2015.
- [12] J. Branke, S. Greco, R. Słowiński, and P. Zielniewicz, “Learning value functions in interactive evolutionary multiobjective optimization,” IEEE Trans. on Evolutionary Computation, Vol.19, No.1, pp. 88-102, 2015.
- [13] K. Miettinen and F. Ruiz, “NAUTILUS framework: towards trade-off-free interaction in multiobjective optimization,” J. of Business Economics, Vol.86, No.1, pp. 5-21, 2016.
- [14] K. Miettinen, J. Hakanen, and D. Podkopaev, “Interactive nonlinear multiobjective optimization methods,” Multiple Criteria Decision Analysis, Springer, 2016.
- [15] K. Deb, K. Miettinen, and S. Chaudhuri, “Toward an estimation of nadir objective vector using a hybrid of evolutionary and local search approaches,” IEEE Trans. on Evolutonary Computation, Vol.14, No.6, 821-841, 2010.
- [16] R. Storn and K. Price, “Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces,” J. of Global Optimization, Vol.11, No.4, pp. 341-359, 1997.
- [17] K. Deb,“An efficient constraint handling method for genetic algorithms,” Computer Methods in Applied Mechanics and Engineering, Vol.186, No.2, pp. 311-338, 2000.
- [18] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential evolutionary: a practical approach to global optimization. Springer, 2006.
- [19] Y. Aksoy, T. W. Butler, and E. D. Minor, “Comparative studies in interactive multiple objective mathematical programming,” European J. of Operational Research, Vol.89, No.2, pp. 408-422, 1996.
- [20] F. Q. Gu, H. L. Liu, and K. C. Tan, “A multiobjective evolutionary algorithm using dynamic weight design method,” Int. J. of Innovative Computing, Information and Control, Vol.8, No.5, pp. 3677-3688, 2012.
- [21] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-objective optimization test problems,” Proc. of the IEEE Congress on Evolutionary Computation, pp. 825-830, 2002.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.