Paper:
Compressive Sensing-Based Adaptive Sparse Multipath Channel Estimation
Beiyi Liu*, Guan Gui**, Shin-ya Matsushita*, and Li Xu*
*Department of Electronics and Information Systems, Akita Prefectural University
84-4 Tsuchiya-Ebinokuchi, Honjo, Akita 015-0055, Japan
E-mails: {m17b018, matsushita, xuli}@akita-pu.ac.jp
**College of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications
No.66, New Mofan Rd., Gulou District, Nanjing, China
- [1] D. Raychaudhuri and N. B. Mandayam, “Frontiers of Wireless and Mobile Communications,” Proc. IEEE, Vol.100, No.4, pp. 824-840, 2012.
- [2] F. Adachi and E. Kudoh, “New direction of broadband wireless technology,” Wireless Communications and Mobile Computing, Vol.7, No.8, pp. 969-983, 2007.
- [3] B. Widrow and S. D. Stearns, “Adaptive signal processing,” Englewood Cliffs, NJ, Prentice-Hall, Inc., 1985.
- [4] Y. Chen and N. Beaulieu, “Performance of collaborative spectrum sensing for cognitive radio in the presence of Gaussian channel estimation errors,” IEEE Trans. Commun., Vol.57, No.7, pp. 1944-1947, 2009.
- [5] Y. Chen, Y. Gu, and A. O. Hero, “Sparse LMS for system identification,” IEEE Int. Conf. on Acoustics, Speech and Signal Processing, pp. 3125-3128, 2009.
- [6] O. Taheri and S. A. Vorobyov, “Reweighted l1-norm penalized LMS for sparse channel estimation and its analysis,” Signal Processing, Vol.104, pp. 70-79, 2014.
- [7] O. Taheri and S. A. Vorobyov, “Sparse channel estimation with lp-norm and reweighted l1-norm penalized least mean squares,” IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), pp. 2864-2867, 2011.
- [8] G. Gui, W. Peng, and F. Adachi, “Improved adaptive sparse channel estimation based on the least mean square algorithm,” IEEE Wireless Communications and Networking Conf. (WCNC), pp. 3105-3109, 2013.
- [9] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, Vol.52, No.4, pp. 1289-1306, 2006.
- [10] E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory, Vol.52, No.2, pp. 489-509, 2006.
- [11] R. Baraniuk, “Compressive Sensing,” IEEE Signal Process. Mag., Vol.24, No.4, pp. 118-121, 2007.
- [12] J. Jin, Y. Gu, and S. Mei, “A Stochastic Gradient Approach on Compressive Sensing Signal Reconstruction Based on Adaptive Filtering Framework,” IEEE J. Sel. Top. Signal Process., Vol.4, No.2, pp. 409-420, 2010.
- [13] J. Haupt, W. U. Bajwa, G. Raz, and R. Nowak, “Toeplitz compressed sensing matrices with applications to sparse channel estimation,” IEEE Trans. Inf. Theory, Vol.56, No.11, pp. 5862-5875, 2010.
- [14] C. R. Berger, Z. Wang, J. Huang, and S. Zhou, “Application of compressive sensing to sparse channel estimation,” IEEE Commun. Mag., Vol.48, No.11, pp. 164-174, 2010.
- [15] J. Huang, C. R. Berger, S. Zhou, and J. Huang, “Comparison of basis pursuit algorithms for sparse channel estimation in underwater acoustic OFDM,” OCEANS 2010 IEEE SYDNEY, Vol.0805, pp. 1-6, 2010.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.