Paper:
Evolution Strategy Sampling Consensus for Robust Estimator
Yuichiro Toda and Naoyuki Kubota
Tokyo Metropolitan University
6-6 Asahigaoka, Hino, Tokyo, Japan
- [1] Y. Li, Y. Zhao, S. Wang, and Q. Ji, “Simultaneous Facial Feature Tracking and Facial Expression Recognition,” IEEE Trans. on Image Processing, Vol.22, No.7, pp. 2559-2573, 2013.
- [2] M. Yasumoto, J. Hayashi, H. Koshimizu, Y. Niwa, and K. Yamamoto, “A Method of Estimating Gender and Age using Average Face,” IEIC Technical Report, Vol.101, No.422, pp. 1-6, 2001.
- [3] J. S. Jang and J. H. Kim, “Fast and Robust Face Detection Using Evolutionary Pruning,” IEEE Trans. on Evolutionary Computation, Vol.12, No.5, pp. 562-571, 2007.
- [4] Z. Wu, Q. Ke, J. Sun, and H. Y. Shum, “Scalable Face Image Retrival with Identify-Based Quantization and Multireference Reranking,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.33, No.10, pp. 1844-2001, 2011.
- [5] D. MingTsai, I. YungChiang, and Y. HuiTsai “A Shift-Tolerant Dissimilarity Measure for Surface Defect Detection,” IEEE Trans. on Industrial Informatics, Vol.8, No.1, pp. 128-137, 2012.
- [6] S. Pellegrini, A. Ess, K. Schindler, and L. van Gool, “You’ll never walk alone: modeling social behavior for multi-target tracking,” Int. Conf. on Computer Vision (ICCV), 2009.
- [7] J. Wang, C. Lu, M. Wang, P. Li, S. Yan, and X. Hu, “Robust Face Recognition via Adaptive Sparse Representation,” IEEE Trans. on Cybernetics, Vol.44, No.12, pp. 2368-2378, 2014.
- [8] K. Krawiec and B. Bhanu, “Visual Learning by Evolutionary and Coevolutionary Feature Synthesis,” IEEE Trans. on Evolutionary Computation, Vol.11, No.5, pp. 635-650, 2007.
- [9] H. Zhang, C. Reardon, and L. E. Parker, “Real-Time Multiple Human Perception With Color-Depth Cameras on a Mobile Robot,” IEEE Trans. on Cybernetics, Vol.43, No.5, pp. 1429-1441, 2013.
- [10] J. M. Frahm, P. Fite-Georgel, D. Gallup, T. Johnson, R. Raguram, C. Wu, Y. H. Jen, E. Dunn, B. Clipp, S. Lazebnik, and M. Pollefeys, “Building rome on a cloudless day,” ECCV, pp. 368-381, 2010.
- [11] A. Maimone and H. Fuchs, “Encumbrance-free telepresence system with real-time 3d capture and display using commodity depth cameras,” IEEE Int. Symp. on Mixed and Augmented Reality (ISMAR), pp. 137-146, 2011.
- [12] H. H. Mousavi, M. Khademi, L. Dodakian, S. C. Cramer, and C. V. Lopes, “A Spatial Augmented Reality Rehab System for Post-Stroke Hand Rehabilitation,” Studies in health technology and informatics, pp. 279-285, 2013.
- [13] Microsoft. http://www.xbox.com/en-US/kinect, 2010, [Accessed April 1, 2015].
- [14] K. Lai, L. Bo, X. Ren, and D. Fox, “A Large-Scale Hierarchical MultiView RGB-D Object Dataset,” IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 1817-1824 2011.
- [15] S. Vidas, P. Moghadam, and M. Bosse,“3D thermal mapping of building interiors using an RGB-D and thermal camera,” IEEE Int. Conf. on Robotics and Automation, 2013.
- [16] S. Kim and J. Kim, “Occupancy Mapping and Surface Reconstruction Using Local Gaussian Processes With Kinect Sensors,” IEEE Trans. on Cybernetics, Vol.43, No.5, pp. 1335-1346, 2013.
- [17] M. Fischler and R. Bolles, “Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography,” Communications of the ACM Vol.24, No.6, pp. 381-395, 1981.
- [18] R. Bolles and M. Fischler, “A RANSAC-based approach to model ftting and its application to fnding cylinders in range data,” Proc., IJCAI, pp. 637-643, 1981.
- [19] R. Schnabel, R. Wahl, and R. Klein, “Effcient RANSAC for Point-Cloud Shape Detection,” Computer Graphics Forum, Vol.26, No.2, pp. 214-226, 2007.
- [20] R. Rusu, Z. Marton, N. Blodow, M. Dolha, and M. Beetz, “Towards 3D Point Cloud Based Object Maps for Household Environments,” Robotics and Autonomous System, Vol.56, pp. 927-941, 2008.
- [21] J. Elseberg, D. Borrmann, and A. N”uchter, “Effcient processing of large 3d point clouds,” ICAT 2011 XXIII Int. Symp. on, pp. 1-7, 2011.
- [22] G. K. L. Tam, Z. Q. Cheng, Y. K. Lai, F. C. Langbein, Y. Liu, D. Marshall, R. R. Martin, X. F. Sun, and P. L. Rosin, “Registration of 3D Point Clouds and Meshes: A Survey From Rigid to Non-Rigid,” IEEE Trans. on Visualization and Computer Graphics, Vol.19, No.7, pp. 1199-1217, 2013.
- [23] J. Han, L. Shao, D. Xu, and J. Shotton, “Enhanced Computer Vision With Microsoft Kinect Sensor: A Review,” IEEE Trans. on Cybernetics, Vol.43, No.5, pp. 1318-1334, 2013.
- [24] X. Qian and C. Ye, “NCC-RANSAC: A Fast Plane Extraction Method for 3-D Range Data Segmentation,” IEEE Trans. on Cybernetics, Vol.44, No.12, pp. 2771-2783, 2014.
- [25] Choi, Sunglok, Taemin Kim, and Wonpil Yu, “Performance evaluation of RANSAC family,” J. of Computer Vision, Vol.24, No.3 pp. 1-12, 2009.
- [26] V. Rodehorst and O. Hellwich, “Genetic Algorithm SAmple Consensus (GASAC) - A Parallel Strategy for Robust Parameter Estimation,” Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition Workshop, CVPRW ’06, pp. 103-110, 2006.
- [27] I. Rechenberg, “Evolutionsstrategie: Optimierung technischer systeme nach prinzipien der biologischen evolution,” Stuttgart: FrommannHolzboog Verlag, 1973.
- [28] H. P. Schwefel, “Kybernetische evolution als strategie der experimentellen forschung in der strmungstechnik,” Diploma thesis, Technical Univ. of Berlin, 1965.
- [29] D. G. Lowe, “Object recognition from local scaleinvariant features,” Proc. of IEEE Int. Conf. on Computer Vision (ICCV), pp. 1150-1157, 1999.
- [30] H. Bay, T. Tuytelaars, and L. V. Gool, “Surf: Speeded up robust features,” European Conf. on Computer Vision (ECCV), 2006.
- [31] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human Detection,” CVPR, pp. 886-893, 2005.
- [32] CUDA, https://developer.nvidia.com/, [Accessed May 1, 2016].
- [33] SIFT on GPU, http://www.cs.unc.edu/˜ccwu/siftgpu/, [Accessed May 1, 2016].
- [34] OpenCV, http://opencv.org/, [Accessed May 1, 2016].
- [35] A. Akbarzadeh, J. M. Frahm, P. Mordohai, B. Clipp, C. Engels, D. Gallup, P. Merrell, M. Phelps, S. Sinha, B. Talton, L. Wang, Q. Yang, H. Stewenius, R. Yang, G. Welch, H. Towles, D. Niste’r, and M. Pollefeys, “Towards urban 3D reconstruction from video,” Proc. of the 3rd Int. Symp. on 3D Data Processing, Visualization and Transmission (3DPVT), pp. 1-8, 2006.
- [36] K. Konolige and M. Agrawal, “FrameSLAM: From bundle adjustment to real-time visual mapping,” IEEE Trans. on Robotics, Vol.25, No.5, pp. 1066-1077, 2008.
- [37] N. Cornelis, B. Leibe, K. Cornelis, and L. V. Gool, “3D Urban Scene Modeling Integrating Recognition and Reconstruction,” Int. J. of Computer Vision, Vol.78, No.2-3, pp. 121-141, 2008.
- [38] B. Cyganek and J. P. Siebert, “Introduction to 3D Computer Vision Techniques and Algorithms,” Wiley, John & Sons, Incorporated, 2009.
- [39] P. H. S. Torr, “Bayesian model estimation and selection for epipolar geometry and generic manifold fitting,” Int. J. of Computer Vision, Vol.50, No.1, pp. 35-61, 2002.
- [40] C. L. Feng and Y. S. Hung, “A robust method for estimating the fundamental matrix,” Proc. the 7th Digital Image Computing: Techniques and Applications, pp. 633-642, 2003.
- [41] B. J. Tordoff and D. W. Murray, “Guided-mlesac: Faster image transform estimation by using matching priors,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.27, No.10, pp. 1523-1535, 2005.
- [42] O. Chum and J. Matas, “Matching with PROSAC - Progressive Sample Consensus,” Int. Conf. on Computer Vision and Pattern Recognition, pp. 220-226, 2005.
- [43] G. Sharp, S. Lee, and D. Wehe, “ICP registration using invariant features,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.24, No.1, pp. 90-102, 2002.
- [44] B. Horn, “Closed-Form Solution of Absolute Orientation Using Unit Quaternions,” J. of the Optical Society of America A, Vol.4, No.4, pp. 629-642, 1987.
- [45] P. J. Rousseeuw, “Least median of squares regression,” J. of the American Statistical Association, Vol.79, No.388, pp. 871-880, 1984.
- [46] F. Vasconcelos, C. Henggeler, and J. P. Barreto, “Adaptive and Hybrid Genetic Approaches for Estimating the Camera Motion from Image Point Correspondences,” ACM Conf. in Genetic and Evolutionary Computing Conf., 2011.
- [47] D. B. Fogel, “Evolutionary Computation,” IEEE Press, 1995.
- [48] Visual Geometry Group, http://www.robots.ox.ac.uk/˜vgg/, [Accessed May 1, 2016].
- [49] VASC Image Database, http://vasc.ri.cmu.edu/id, [Accessed February 1, 2016].
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.