Paper:
Power-Regularized Fuzzy c-Means Clustering with a Fuzzification Parameter Less Than One
Yuchi Kanzawa
Shibaura Institute of Technology
3-7-5 Toyosu, Koto, Tokyo 135-8548, Japan
- [1] J. B. MacQueen, “Some Methods of Classification and Analysis of Multivariate Observations,” Proc. 5th Berkeley Symp. on Math. Stat. and Prob., pp. 281-297, 1967.
- [2] J. Bezdek, “Pattern Recognition with Fuzzy Objective Function Algorithms,” Plenum Press, New York, 1981.
- [3] S. Miyamoto and M. Mukaidono, “Fuzzy c-Means as a Regularization and Maximum Entropy Approach,” Proc. 7th Int. Fuzzy Systems Association World Congress (IFSA’97), Vol.2, pp. 86-92, 1997.
- [4] S. Miyamoto and K. Umayahara, “Fuzzy Clustering by Quadratic Regularization,” Proc. 1998 IEEE Int. Conf. Fuzzy Syst., pp. 1394-1399, 1998.
- [5] Y. Kanzawa, “Generalization of Quadratic Regularized and Standard Fuzzy c-Means Clustering with respect to Regularization of Hard c-Means,” LNCS, Vol.8234, pp. 152-165, 2013.
- [6] S. Miyamoto and K. Umayahara, “Methods in Hard and Fuzzy Clustering,” in: Z.-Q. Liu and S. Miyamoto (Eds.), Soft Computing and Human-Centered Machines, Springer-Verlag Tokyo, 2000.
- [7] C. L. Blake and C. J. Merz, UCI repository of machine learning databases, a huge collection of artificial and real-world data sets, 1998. Available from: http://archive.ics.uci.edu/ml/ [Accessed January 3, 2016]
- [8] L. Hubert and P. Arabie, “Comparing Partitions,” J. of Classification, Vol.2, pp. 193-218, 1985.
- [9] I. S. Dhillon and D. S. Modha, “Concept Decompositions for Large Sparse Text Data Using Clustering,” Machine Learning, Vol.42, pp. 143-175, 2001.
- [10] S. Miyamoto and K. Mizutani, “Fuzzy Multiset Model and Methods of Nonlinear Document Clustering for Information Retrieval,” LNCS, Vol.3131, pp. 273-283, 2004.
- [11] K. Mizutani, R. Inokuchi, and S. Miyamoto, “Algorithms of Nonlinear Document Clustering based on Fuzzy Set Model,” Int. J. of Intelligent Systems, Vol.23, No.2, pp. 176-198, 2008.
- [12] Y. Kanzawa, “On Kernelization for a Maximizing Model of Bezdek-like Spherical Fuzzy c-means Clustering,” LNCS, Vol.8825, pp. 108-121, 2014.
- [13] Y. Kanzawa, “On Kernelization for a Maximizing Model of Bezdek-like Spherical Fuzzy c-means Clustering,” LNCS, Vol.8825, pp. 108-121, 2014.
- [14] Y. Kanzawa, “A Maximizing Model of Bezdek-like Spherical Fuzzy c-Means,” J. of Advanced Computational Intelligence and Intelligent Informatics (JACIII), Vol.19, No.5, pp. 662-669, 2015.
- [15] Y. Kanzawa, “A Maximizing Model of Spherical Bezdek-type Fuzzy Multi-medoids Clustering,” J. of Advanced Computational Intelligence and Intelligent Informatics (JACIII), Vol.19, No.6, pp. 738-746, 2015.
- [16] R. J. Hathaway, J. W. Davenport, and J. C. Bezdek, “Relational Duals of the c-Means Clustering Algorithms,” Pattern Recognition, Vol.22, No.2, pp. 205-212, 1989.
- [17] R. J. Hathaway and J. C. Bezdek, “NERF C-means: Non-Euclidean Relational Fuzzy Clustering,” Pattern Recognition, Vol.27, pp. 429-437, 1994.
- [18] Y. Kanzawa, “Entropy-regularized Fuzzy Clustering for non-Euclidean Relational Data and for Indefinite Kernel Data,” J. of Advanced Computational Intelligence and Intelligent Informatics (JACIII), Vol.16, No.7, pp.784-792, 2012.
- [19] Y. Kanzawa, “Relational Fuzzy c-means and Kernel Fuzzy c-means Using an Object-wise beta-spread Transformation,” J. of Advanced Computational Intelligence and Intelligent Informatics (JACIII), Vol.17, No.4, pp. 511-519, 2013.
- [20] Y. Kanzawa, “Relational Fuzzy c-lines Clustering Derived from Kernelization of Fuzzy c-lines,” J. of Advanced Computational Intelligence and Intelligent Informatics (JACIII), Vol.18, No.2, pp. 175-181, 2014.
- [21] C. Oh, K. Honda, and H. Ichihashi, “Fuzzy Clustering for Categorical Multivariate Data”, Proc. IFSA World Congress and 20th NAFIPS Int. Conf., pp. 2154-2159, 2001.
- [22] K. Honda, S. Oshio, and A. Notsu, “FCM-type fuzzy co-clustering by K-L information regularization,” Proc. of 2014 IEEE Int. Conf. on Fuzzy Systems, pp. 2505-2510, 2014.
- [23] K. Honda, S. Oshio, and A. Notsu, “Item Membership Fuzzification in Fuzzy Co-clustering Based on Multinomial Mixture Concept,” Proc. of 2014 IEEE Int. Conf. on Granular Computing, pp. 94-99, 2014.
- [24] Y. Kanzawa, “Fuzzy Co-Clustering Algorithms Based on Fuzzy Relational Clustering and TIBA Imputation,” J. of Advanced Computational Intelligence and Intelligent Informatics (JACIII), Vol.18, No.2, pp. 182-189, 2014.
- [25] Y. Kanzawa, “On Possibilistic Clustering Methods Based on Shannon/Tsallis-Entropy for Spherical Data and Categorical Multivariate Data,” LNCS, Vol.9321, pp. 125-138, 2015.
- [26] Y. Kanzawa, “Bezdek-type Fuzzified Co-Clustering Algorithm,” J. of Advanced Computational Intelligence and Intelligent Informatics (JACIII), Vol.19, No.6, pp. 852-860, 2015.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.