Paper:

# AEGA: A New Real-Coded Genetic AlgorithmTaking Account of Extrapolation

## Kento Uemura and Isao Ono

Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology

4259 Nagatsuta, Midori-ku, Yokohama, 226-8502 Kanagawa, Japan

*J. Adv. Comput. Intell. Intell. Inform.*, Vol.20 No.3, pp. 429-437, 2016.

- [1] D. Whitley, M. Lunacek, and J. Knight, “Ruffled by Ridges: How Evolutionary Algorithms Can Fail,” Proc. of the 6th Annual Conf. on Genetic and Evolutionary Computation (GECCO'04), pp. 294-306, 2004.
- [2] L. Davis, “Handbook of Genetic Algorithms,” Van Nostrand Reinhold, 1991.
- [3] A. H. Wright, “Genetic Algorithms for Real Parameter Optimization,” Foundations of Genetic Algorithms, pp. 205-218. Morgan Kaufmann, 1991.
- [4] L. Eshelman, “Real-Coded Genetic Algorithms and Interval-Schemata,” Foundations of Genetic Algorithms, pp. 187-202, 1993.
- [5] I. Ono and S. Kobayashi, “A Real-coded Genetic Algorithm for Function Optimization Using Unimodal Normal Distribution Crossover,” Proc. of the 7th Int. Conf. on Genetic Algorithms, pp. 246-253, 1997.
- [6] S. Tsutsui, M. Yamamura, and T. Higuchi, “Multi-parent recombination with simplex crossover in real coded genetic algorithms,” Proc. of the Genetic and Evolutionary Computation Conf. 1999 (GECCO'99), pp. 657-664, 1999.
- [7] H. Kita, I. Ono, and S. Kobayashi, “Multi-parental extension of the unimodal normal distribution crossover for real-coded genetic algorithms,” Proc. of 1999 Congress on Evolutionary Computation (CEC'99), pp. 1581-1587, 1999.
- [8] K. Deb, A. Anand, and D. Joshi, “A computationally efficient evolutionary algorithm for real-parameter optimization,” Evolutionary Computation, Vol.10, No.4, pp. 371-395, 2002.
- [9] S. Kobayashi, “The frontiers of real-coded genetic algorithms,” Trans. of the Japanese Society for Artificial intelligence, Vol.24, No.1, pp. 147-162, 2009 (in Japanese).
- [10] T. Bäck, F. Hoffmeister, and H. P. Schwefel, “A Survey of Evolution Strategies,” Proc. of the 4th Int. Conf. on Genetic Algorithms, pp. 2-9, 1991.
- [11] H. P. Schwefel, “Numerical Optimization of Computer Models,” John Wiley & Sons, Inc., 1981.
- [12] Y. Akimoto, Y. Nagata, J. Sakuma, I. Ono, and S. Kobayashi, “Proposal and evaluation of adaptive real-coded crossover AREX,” Trans. of the Japanese Society for Artificial Intelligence, Vol.24, No.6, pp. 446-458, 2009 (in Japanese).
- [13] Y. Akimoto, J. Sakuma, I. Ono, and S. Kobayashi, “Adaptation of expansion rate for real-coded crossovers,” Proc. of the 11th Annual Conf. on Genetic and Evolutionary Computation (GECCO'09), pp. 739-746, 2009.
- [14] K. Uemura, N. Nakashima, Y. Nagata, and I. Ono, “A New Real-coded Genetic Algorithm for Implicit Constrained Black-box Function Optimization,” Proc. of 2013 IEEE Congress on Evolutionary Computation (CEC'13), pp. 2887-2894, 2013.
- [15] I. Ono, S. Kobayashi, and K. Yoshida, “Optimal lens design by real-coded genetic algorithms using UNDX,” Computer Methods in Applied Mechanics and Engineering, Vol.186, No.2-4, pp. 483-497, 2000.
- [16] D. V. Arnold and N. Hansen, “A (1+1)-CMA-ES for Constrained Optimisation,” Proc. of the 8th Annual Conf. on Genetic and Evolutionary Computation (GECCO'12), pp. 297-304, 2012.
- [17] Z. Michalewicz and M. Schoenauer, “Evolutionary Algorithms for Constrained Parameter Optimization Problems,” Evolutionary Computation, Vol.4, pp. 1-32, 1996.
- [18] D. G. Luenberger and Y. Ye, “Linear and Nonlinear Programming,” Int. Series in Operations Research & Management Science, Vol.116, Springer, 3 edition, 2008.

This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.