Paper:
A Maximizing Model of Bezdek-Like Spherical Fuzzy c-Means
Yuchi Kanzawa
Shibaura Institute of Technology
3-7-5 Toyosu, Koto, Tokyo 135-8548, Japan
- [1] J. B. MacQueen, “Some Methods of Classification and Analysis of Multivariate Observations,” Proc. 5th Berkeley Symp. on Math. Stat. and Prob., pp. 281-297, 1967.
- [2] J. Dunn, “A Fuzzy Relative of the Isodata Process and Its Use in Detecting Compact, Well-Separated Clusters,” J. of Cybernetics, Vol.3, No.3, pp. 32-57, 1973.
- [3] J. Bezdek, “Pattern Recognition with Fuzzy Objective Function Algorithms,” Plenum Press, New York, 1981.
- [4] N. R. Pal and J. C. Bezdek, “On Cluster Validity for Fuzzy c-Means Model,” IEEE Trans. Fuzzy Syst., Vol.1, pp. 370-379, 1995.
- [5] S. Miyamoto and M. Mukaidono, “Fuzzy c-Means as a Regularization and Maximum Entropy Approach,” Proc. 7th Int. Fuzzy Systems Association World Congress (IFSA’97), Vol.2, pp. 86-92, 1997.
- [6] I. S. Dhillon and D. S. Modha, “Concept Decompositions for Large Sparse Text Data Using Clustering,” Machine Learning, Vol.42, pp. 143-175, 2001.
- [7] S. Miyamoto and K. Mizutani, “Fuzzy Multiset Model and Methods of Nonlinear Document Clustering for Information Retrieval,” LNCS, Vol.3131, pp. 273-283, 2004.
- [8] S. Miyamoto, H. Ichihashi, and K. Honda, “Algorithms for Fuzzy Clustering,” Springer, 2008.
- [9] S. Miyamoto and K. Umayahara, “Methods in Hard and Fuzzy Clustering,” in Z.-Q. Liu, and S. Miyamoto (eds.), Soft Computing and Humancentered Machines, Springer-Verlag Tokyo, (2000).
- [10] C. Buchta, M. Kober, I. Feinerer, and K. Hornik, “Spherical k-Means Clustering,” J. of Statistical Software, Vol.50, No.10, 2012.
- [11] A. Banerjee, I. S. Dhillon, J. Ghosh, and S. Sra, “Clustering on the Unit Hypersphere using von Mises-Fisher Distributions,” J. of Machine Learning Research, Vol.6, pp. 1345-1382, 2005.
- [12] T. Mitchell, “20 Newsgroups.” UCI KDD Archive, available at: http://kdd.ics.uci.edu/databases/20newsgroups/ [Accessed Febrary 14, 2015]
- [13] D. Boley, M. Gini, R. Gross, E. H. Han, K. Hasting, G. Karypis, V. Kumar, B. Mobasher, and J. Moore, “Document Categorization and Query Generation on the World Wide Web using WebACE,” AI Review, Vol.11, pp. 365-391, 1999.
- [14] G. Ghosh, A. Strehl, and S. Merugu, “A Consensus Framework for Integrating Distributed Clusterings under Limited Knowledge Sharing,” Proc. NSF Workshop on Next Generation Data Mining, pp. 99-108, 2002.
- [15] S. Miyamoto and D. Suizu, “Fuzzy c-Means Clustering Using Kernel Functions in Support Vector Machines,” J. Advanced Computational Intelligence and Intelligent Informatics, Vol.7, No.1, pp. 25-30, 2003.
- [16] M. Roubens, “Pattern Classification Problems and Fuzzy Sets,” Fuzzy Sets and Syst., Vol.1, pp. 239-253, 1978.
- [17] M. P. Windham, “Numerical Classification of Proximity Data with Assignment Measures,” J. Classification, Vol.2, pp. 157-172, 1985.
- [18] R. Krishnapuram and J. M. Keller, “A Possibilistic Approach to Clustering,” IEEE Trans. on Fuzzy Systems, Vol.1, pp. 98-110, 1993.
- [19] C. Oh, K. Honda, and H. Ichihashi, “Fuzzy Clustering for Categorical Multivariate Data,” Proc. IFSA World Congress and 20th NAFIPS Int. Conf., pp. 2154-2159, 2001.
- [20] D. Abril, G. Navarro-Arribas, and V. Torra, “Spherical Microaggregation: Anonymizing Sparse Vector Spaces,” Computers & Security, Vol.49, pp. 28-44, 2015.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.