Paper:
On Sequential Cluster Extraction Based on L1-Regularized Possibilistic c-Means
Yukihiro Hamasuna* and Yasunori Endo**
*Department of Informatics, School of Science and Engineering, Kindai University
3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
**Faculty of Engineering, Information and Systems, University of Tsukuba
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
- [1] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern Recognition Letters, Vol.31, No.8, pp. 651-666, 2010.
- [2] J. C. Bezdek, “Pattern Recognition with Fuzzy Objective Function Algorithms,” Plenum Press, New York, 1981.
- [3] S. Miyamoto, H. Ichihashi, and K. Honda, “Algorithms for Fuzzy Clustering,” Springer, Heidelberg, 2008.
- [4] R. Krishnapuram and J. M. Keller, “A possibilistic approach to clustering,” IEEE Trans. on Fuzzy Systems, Vol.1, No.2, pp. 98-110, 1993.
- [5] R. N. Davé and R. Krishnapuram, “Robust clustering methods: A unified view,” IEEE Trans. on Fuzzy Systems, Vol.5, No.2, pp. 270-293, 1997.
- [6] S. Miyamoto, Y. Kuroda, and K. Arai, “Algorithms for Sequential Extraction of Clusters by Possibilistic Method and Comparison with Mountain Clustering,” J. of Advanced Computational Intelligence and Intelligent Informatics (JACIII), Vol.12, No.5, pp. 448-453, 2008.
- [7] R. R. Yager and D. P. Filev, Approximate clustering via the mountain method, it IEEE Transactions on Systems, Man and Cybernetics, Vol. 2, No. 8, pp. 1279–1284, 1994
- [8] R. N. Davé, “Characterization and detection of noise in clustering,” Pattern Recognition Letters, Vol.12, No.11, pp. 657-664, 1991.
- [9] Y. Hamasuna and Y. Endo, “Sequential Extraction By Using Two Types of Crisp Possibilistic Clustering,” Proc. of the IEEE Int. Conf. on Systems, Man, and Cybernetics (IEEE SMC 2013), pp. 3505-3510, 2013.
- [10] R. Inokuchi and S. Miyamoto, “Sparse Possibilistic Clustering with L1 Regularization,” Proc. of the 2007 IEEE Int. Conf. on Granular Computing (GrC2007), pp. 442-445, 2007.
- [11] K. Tsuda and T. Kudo, “Clustering graphs by weighted substructure mining,” Proc. of the 23rd Int. Conf. on Machine learning, pp. 953-960, 2006.
- [12] W. M. Rand, “Objective criteria for the evaluation of clustering methods,” J. of the American Statistical Association, Vol.66, No.336, pp. 846-850, 1971.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.