Paper:
Polynomial Controller Design Using Disturbance Observer
Hugang Han* and Hak-Keung Lam**
*Prefectural University of Hiroshima
1-1-71 Ujina-Higashi, Minami-ku, Hiroshima 734-8558, Japan
**King’s College London
WC2R 2LS London, United Kingdom
- [1] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. Syst., Man, Cybern., Vol.15, pp. 116-132, 1985.
- [2] K. Tanaka and H. O. Wang, “Fuzzy Control System Design and Analysis – A Linear Matrix Inequality Approach,” Wiley, New York, 2001.
- [3] K. Tanaka, H. Yoshida, H. Ohtake, and H. O. Wang, “A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems,” IEEE Trans. Fuzzy Syst., Vol.17, No.4, pp. 911-922, 2009.
- [4] S. Prajna, A. Papachristodoulou, and P. A. Parrilo, “Introducing SOSTOOLS: A general purpose sum of squares programming solver,” in Proc. 41st IEEE Conf. Decision Control, 2002.
- [5] B. Yao, M. A. Majed, and M. Tomizuka, “High-performance robust motion control of machine tools: an adaptive robust control approach and comparative experiments,” IEEE/ASME Trans. Mechatronics, Vol.2, No.2, pp. 63-76, 1997.
- [6] W.-H. Chen, “Disturbance observer based control for nonlinear systems,” IEEE/ASME Trans. Mechatronics, Vol.9, No.4, pp. 706-710, 2004.
- [7] J. Yang, W.-H. Chen, and S. Li, “Non-linear disturbance observer-based robust control for systems with mismatched disturbances/uncertainties,” IET Control Theory Appl., Vol.5, Iss.18, pp. 2053-2062, 2011.
- [8] E. Kim, “A fuzzy disturbance observer and its application to control,” IEEE Trans. Fuzzy Syst., Vol.10, No.1, pp. 77-84, 2002.
- [9] E. Kim and S. Lee, “Output feedback tracking control of MIMO systems using a fuzzy disturbance observer and its application to the speed control of a PM synchronous motor,” IEEE Trans. Fuzzy Syst., Vol.13, No.6, pp. 725-741, 2005.
- [10] H. Han, “Adaptive fuzzy controller for a class of uncertain nonlinear systems,” J. of Japan Society for Fuzzy Theory and Intelligence Informatics, Vol.21, No.4, pp. 577-586, 2009.
- [11] H. Han and T. Koshiro, “Adaptive T-S fuzzy controller using fuzzy approximators,” Proc. of 2010 IEEE World Congress on Computational Intelligence, Barcelona, Spain, 2010.
- [12] Y.-Y. Cao and P. M. Frank, “Robust H∞ disturbance attenuation for a class of uncertain discrete-time fuzzy systems,” IEEE Trans. on Fuzzy Systems, Vol. 8, No, 4, pp. 406-415, 2000.
- [13] L.-X. Wang and J. M. Mendal, “Fuzzy basis functions, universal approximation, and orthogonal least-squares learning,” IEEE Trans. Neural Networks, Vol.3, pp. 807-814, 1992.
- [14] D. Soffker, T.-J. Yu, and P. C. Muller, “State estimation of dynamical systems with nonlinearities by using proportional-integral observer,” Int. J. Syst. Sci., Vol.26, No.9, pp. 1571-1582, 1995.
- [15] D. Soffker and P. C. Muller, “Detection of cracks in turbo rotors – a new observer based method,” ASME J. of Dynamic Systems, Measurement and Control, No.3, pp. 518-524, 1993.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.