Paper:
Hierarchical Bayesian Model for Diffuse Optical Tomography of the Human Brain: Human Experimental Study
Okito Yamashita*,**, Takeaki Shimokawa*, Takashi Kosaka*,
Takashi Amita***, Yoshihiro Inoue***, and Masa-aki Sato*
*Neural Information Analysis Laboratories, ATR, Soraku-gun, Kyoto 619-0288, Japan
**Brain Functional Imaging Technologies Group, CiNet, 1-4 Yamadaoka, Suita City, Osaka 565-0871, Japan
***Medical Systems Division Research and Development Department, Shimadzu Corporation, Nakagyo-ku, Kyoto 604-8511, Japan
- [1] Y. Hoshi andM. Tamura, “Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man,” Neurosci. Lett., Vol.150, No.1, pp. 5-8, Feb. 1993.
- [2] M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage, Vol.63, No.2, pp. 921-935, Mar. 2012.
- [3] T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage, Vol.57, No.3, pp. 991-1002, Aug. 2011.
- [4] Y. Zhang, D. H. Brooks, M. A. Franceschini, and D. A. Boas, “Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging,” J. Biomed. Opt., Vol.10, No.1, p. 011014, 2005.
- [5] S. Kohno, I. Miyai, A. Seiyama, I. Oda, A. Ishikawa, S. Tsuneishi, T. Amita, and K. Shimizu, “Removal of the skin blood flow artifact in functional near-infrared spectroscopic imaging data through independent component analysis,” J. Biomed. Opt., Vol.12, No.6, p. 062111, 2007.
- [6] Q. Zhang, G. E. Strangman, and G. Ganis, “Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: how well and when does it work?,” Neuroimage, Vol.45, No.3, pp. 788-94, Apr. 2009.
- [7] N. M. Gregg, B.R.White, B. W. Zeff,A. J.Berger, and J. P.Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front. Neuroenergetics, Vol.2, pp. 1-8, Jan. 2010.
- [8] A. R. Laird, K. M. Mcmillan, J. L. Lancaster, P. Kochunov, P. E. Turkeltaub, J. V Pardo, and P. T. Fox, “A Comparison of Label-Based Review and ALE Meta-Analysis in the Stroop Task,” Hum. Brain Mapp., Vol.21, No.February, pp. 6-21, 2005.
- [9] A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys.Med. Biol., Vol.50, No.4, pp. R1-43, Feb. 2005.
- [10] T. Durduran, R. Choe,W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Reports Prog. Phys., Vol.73, No.7, p. 076701, Jul. 2010.
- [11] J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab., Vol.23, No.8, pp. 911-924, Aug. 2003.
- [12] M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol., Vol.50, No.12, pp. 2837-2858, Jun. 2005.
- [13] N. Cao, A. Nehorai, and M. Jacobs, “Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm,” Opt. Express, Vol.15, No.21, pp. 13695-13708, Oct. 2007.
- [14] H. Niu, F. Tian, Z.-J. Lin, and H. Liu, “Development of a compensation algorithm for accurate depth localization in diffuse optical tomography,” Opt. Lett., Vol.35, No.3, pp. 429-431, Feb. 2010.
- [15] T. Shimokawa, T. Kosaka, O. Yamashita, N. Hiroe, T. Amita, Y. Inoue, and M. Sato, “Hierarchical Bayesian estimation improves depth accuracy and spatial resolution of diffuse optical tomography,” Opt. Express, Vol.20, No.18, pp. 20427-20446, Aug. 2012.
- [16] T. Shimokawa, T. Kosaka, O. Yamashita, N. Hiroe, T. Amita, Y. Inoue, and M. Sato, “Extended hierarchical Bayesian diffuse optical tomography for removing scalp artifact,” Biomed. Opt. Express, Vol.4, No.11, pp. 2411-2432, Jan. 2013.
- [17] T. Sato, K. Takeda, I. Nambu, T. Aihara, O. Yamashita, Y. Inoue, Y. Otaka, Y. Wada, M. Kawato, M. Sato, and R. Osu, “Reduction of global interference of scalp hemodynamics in functional nearinfrared spectroscopy using short distance probes,” Neuroimage (in revision).
- [18] B. R. White and J. P. Culver, “Phase-encoded retinotopy as an evaluation of diffuse optical neuroimaging,” Neuroimage, Vol.49, No.1, pp. 568-577, Jan. 2010.
- [19] B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage, Vol.47, No.1, pp. 148-156, Aug. 2009.
- [20] A. C. Faul and M. E. Tipping, “Analysis of sparse Bayesian learning,” Adv. Neural Inf. Process. Syst., pp. 383-390, 2002.
- [21] D. MacKay, “Bayesian nonlinear modeling for the prediction competition,” ASHRAE Trans., Vol.100, Part 2, pp. 1053-1062, 1994.
- [22] H. Attias, “Inferring parameters and structure of latent variable models by variational Bayes,” in Proc. 15th Conf. on Uncertainty in Artificial Intelligence, pp. 21-30, 1999.
- [23] B. R. Fischl, “FreeSurfer,” Neuroimage, Vol.62, No.2, pp. 774-781, Aug. 2012.
- [24] Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express, Vol.17, No.22, pp. 20178-20190, Oct. 2009.
- [25] Q. Fang, “Mesh-based Monte Carlo method using fast ray-tracing in Plüker coordinates,” Biomed. Opt. Express, Vol.1, No.1, pp. 165-175, Jul. 2010.
- [26] A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl. Opt., Vol.44, No.10, pp. 1948-1956, Apr. 2005.
- [27] E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H.Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage, Vol.61, No.1, pp. 70-81, May 2012.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.