Paper:
Monthly Maximum Accumulated Precipitation Forecasting Using Local Precipitation Data and Global Climate Modes
Junaida Binti Sulaiman, Herdianti Darwis, and Hideo Hirose
Department of Systems Design and Informatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, 820-8502 Fukuoka, Japan
- [1] R. S. V. Teegavarapu, A. Goly, C. Viswanathan, and P. Behera, “Precipitation Extremes and Climate Change: Evaluation Using Descriptive WMO Indices,” World Environmental and Water Resources Congress 2012, No.2011, pp. 1927-1936, 2012.
- [2] Z. Zeng, W. W. Hsieh, A. Shabbar, and W. R. Burrows, “Seasonal prediction of winter extreme precipitation over Canada by support vector regression,” Hydrology and Earth System Sciences, Vol.15, No.1, pp. 65-74, Jan. 2011.
- [3] L. Foresti, A. Pozdnoukhov, and D. Tuia, “Extreme precipitation modelling using geostatistics and machine learning algorithms,” geoENV VII Geostatistics for Environmental Applications, No.Ml, pp. 41-52, 2010.
- [4] S. Othman, “Adaptation to Climate Change and Reducing Natural Disaster Risk: A Study on Country Practices and Lesson between Malaysia and Japan,” Malaysian Meteorological Department, Kuala Lumpur, Malaysia, 2011.
- [5] A. El-Shafie, A. Noureldin, M. Taha, A. Hussain, and M. Mukhlisin, “Dynamic versus static neural network model for rainfall forecasting at Klang River Basin, Malaysia,” Hydrology and Earth System Sciences, Vol.16, No.4, pp. 1151-1169, Apr. 2012.
- [6] N. Q. Hung, M. S. Babel, S. Weesakul, and N. K. Tripathi, “An artificial neural network model for rainfall forecasting in Bangkok, Thailand,” Hydrology and Earth System Sciences, Vol.13, No.8, pp. 1413-1425, Aug. 2009.
- [7] J. Sulaiman and H. Hirose, “A method to predict heavy precipitation using the Artificial Neural Networks with an application,” 2012 7th Int. Conf. on Computing and Convergence Technology (ICCCT), Vol.3-5, pp. 663-667, Dec. 2012.
- [8] R. May, G. Dandy, and H. Maier, “Review of Input Variable Selection Methods for Artificial Neural Network,” Artificial Neural Networks – Methodological Advances and Biomedical Applications, K. Suzuki (Ed.), pp. 9-44, InTech, 2011.
- [9] K. P. Sudheer, a. K. Gosain, and K. S. Ramasastri, “A data-driven algorithm for constructing artificial neural network rainfall-runoff models,” Hydrological Processes, Vol.16, No.6, pp. 1325-1330, Apr. 2002.
- [10] G. Zhang, B. Eddy Patuwo, and M. Y. Hu, “Forecasting with artificial neural networks,” Int. J. of Forecasting, Vol.14, No.1, pp. 35-62, Mar. 1998.
- [11] S. Chattopadhyay and G. Chattopadhyay, “Comparative study among different neural net learning algorithms applied to rainfall time series,” Meteorological Applications, Vol.15, No.2, pp. 273-280, 2008.
- [12] S. S. Monira, Z. M. Faisal, and H. Hirose, “A Neural Network Ensemble Incorporated with Dynamic Variable Selection for Rainfall Forecast,” 2011 12th ACIS Int. Conf. on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, pp. 7-12, Jul. 2011.
- [13] C. H. Aladag, U. Yolcu, and E. Egrioglu, “A New Multiplicative Seasonal Neural Network Model Based on Particle Swarm Optimization,” Neural Processing Letters, Vol.37, No.3, pp. 251-262, Sep. 2012.
- [14] G. E. P. Box, G. M. Jenkins, and G. C. Reissel, “Time Series Analysis Forecasting and Control,” 3rd edition, Prentice Hall, 1994.
- [15] National Climatic Data Centre, USA
ftp://ftp.ncdc.noaa.gov/pub/data/gsod/ [Accessed November 15, 2013]. - [16] WorldMeteorological Organization, “Guidelines on Analysis of extremes in a changing climate in support of informed decisions for adaptation,” Geneva, 2009.
- [17] P. Kun Liong and N. A. Shaari, “A Study on The Extreme Daily Rainfall Cases in Northwest Peninsular Malaysia,” Research Publication No. 6/2011, Malaysian Meteorological Department, Kuala Lumpur, Malaysia, 2011.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.