single-jc.php

JACIII Vol.18 No.4 pp. 529-537
doi: 10.20965/jaciii.2014.p0529
(2014)

Paper:

An Ultrasound Technique of Bone Thickness Estimation for Pedicle Screw Insertion

Muhamad Khairul Ali Hassan*,**, Kouki Nagamune*,***,
Kenichiro Kakutani***, Koichiro Maeno***, Kotaro Nishida***,
and Masahiro Kurosaka***

*Graduate School Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan

**School of Mechatronic Engineering, Universiti Malaysia Perlis

***Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University

Received:
November 29, 2013
Accepted:
April 21, 2014
Published:
July 20, 2014
Keywords:
pedicle screw, ultrasound transducer, pulseecho technique, cancellous bone, bone thickness
Abstract

Information on bone thickness is useful to surgeons in fixing pedicle screws in place. The quality of pedicle screw insertion continues to increase with the introduction of such techniques as navigation based on computed tomography and fluoroscopy. These techniques reduce error in pedicle screw placement and injury. However, the information reported on the real time measurement of depths drilled through cancellous bone, also known as trabecular bone or sponge bone, by the pedicle screw is minimal. It currently depends on palpation by the physician for judging the boundary between cortical and cancellous bone – an inaccurate technique that may produce errors in screw placement and the risk of injury during surgical processes. Ultrasound is used to help overcome such problems. Bone thickness is estimated in this study using an ultrasound transducer attached to 20 mm of polymethyl methacrylate, a clear glass-like acrylic. The bone thickness of five specimens was measured using ultrasound echo signals. Error in estimating bone thickness was small, 8.121%, showing the accuracy in bone thickness to be more than 90.00% which is suitable for use in estimating bone thickness in pedicle screw insertion.

Cite this article as:
M. Hassan, K. Nagamune, <. Kakutani, K. Maeno, K. Nishida, and <. Kurosaka, “An Ultrasound Technique of Bone Thickness Estimation for Pedicle Screw Insertion,” J. Adv. Comput. Intell. Intell. Inform., Vol.18, No.4, pp. 529-537, 2014.
Data files:
References
  1. [1] A. Hosokawa and T. Otani, “Ultrasonic wave propagation in bovine cancellous bone,” J. Acoust. Soc. Am. Vol.101, No.1, pp. 558-562, 1997.
  2. [2] Ultrasound technologist schools, Homepage of Ultrasound technologist schools,
    http://www.ultrasoundtechnologistschools.org
    [accessed on March 2010]
  3. [3] W. Abendschein and G. W. Hyatt, “Ultrasonics and selected physical properties of bone,” Clin Orthop Relat Res., Vol.69, pp. 294-301, 1970.
  4. [4] M B. Kabins and J. N Weinstein, “The history of verterbral screw and pedicle screw fixation,” Iowa Orthopaedic J., Vol.11, pp. 127-136, 1991.
  5. [5] U. Liljenqvist, L. Hackenberg, T. Link, and H. Halm, “Pullout strength of pedicle screws versus pedicle and laminar hooks in the thoracic spine,” Acta Orthop Belg, Vol.67, pp. 157-163, 2001.
  6. [6] M. H. Krag, D. L.Weaver, B. D. Beynnon, and L. D. Haugh, “Morphometry of the thoracic and lumbar spine related to transpedicular screw placement for surgical spinal fixation,” J. of Spine, Vol.13, 1988.
  7. [7] A. R. Vaccaro, S. J. Rizzolo, T. J. Allardyce, M. Ramsey, J. Salvo, and R. A. Balderston, “Placement of pedicle screws in the thoracic spine. Part I: Morphometric analysis of the thoracic vertebrae,” J Bone Joint Surg Am, Vol.77, pp. 1193-1199, 1995.
  8. [8] D. Brockmeyer, R. Apfelbaum, R. Tippets, M. Walker, and L. Carey, “Pediatric cervical spine instrumentation using screw fixation,” Pediatr Neurosurg, Vol.22, pp. 147-157, 1995.
  9. [9] D.W. Lowry, I. F Pollack, B. Clyde, A. L.Albright, and P.D.Adelson, “Upper cervical spine fusion in the pediatric population,” J Neurosurg, Vol.87, pp. 671-676, 1997.
  10. [10] S. J. Lewis, F. Canavese, and S. Keetbaas, “Intralaminar screw inser-tion of thoracic spine in children with severe spinal deformities: two case reports,” Spine, Vol.34, pp. E251-E254, 2009.
  11. [11] M. F. O’Brien, L. G. Lenke, S. Mardjetko, T. G. Lowe, Y. Kong, and K. Eck, “Pedicle morphology in thoracic adolescent idiopathic scoliosis: is pedicle fixation an anatomically viable technique?” Spine, Vol.25, pp. 2285-2293, 2000.
  12. [12] H. Senaran, S. A. Shah, P. G. Gabos, A. G. Littleton, G. Neiss, and J. T. Guille, “Difficult thoracic pedicle screw placement in adolescent idiopathic scoliosis,” J Spinal Disord Tech, Vol.21, pp. 187-19, 2008.
  13. [13] B. A. C. Molina, M. Daniel, M. D. Scibba, M. D. p. C. Chaput, M. D. J. Tortolani, I. George, M. D. Jallo, and M. D. R. M. Kretzer, “A computed tomography-based feasibility study of translaminar screw placement in the pediatric thoracic spine,” J Neurosurg Pediatrics, Vol.9, pp. 27-34, 2012.
  14. [14] V. Ferrari, P. Parchi, S. Condino, M. Carbone, A. Balugan, M. Ferrari, F. Mosca, and M. Lisanti “An optimal design for patientspecific templates forpedicle spine screws placement,” Int. J Med Robotics Comput Assist Surg, DOI:10.1002/rcs. 1439, 2012.
  15. [15] G. L. Farber, H. M. Place, R. A. Mazur et al. “Accuracy of pedicle screw placement in lumbar fusions by plain radiographs and computed tomography,” Spine, Vol.20, No.13, pp. 1494-1499, 1995.
  16. [16] P. Merloz, J. Tonetti, A. Eid et al. “Computer assisted spine surgery,” Clin Orthop Relat Res, Vol.337, pp. 86-96, 1997.
  17. [17] V. Y. Wang, C. T. Chin, D. C. Lu et al. “Free-hand thoracic pedicle screws placed by neurosurgery residents: a CT analysis,” Eur Spine J., Vol.19, No.5, pp. 821-827, 2010.
  18. [18] D. Gelalis et al., “Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques,” European Spine J., Vol.21, No.2, pp. 247-255, 2012.
  19. [19] L. P. Amiot, K. Lang, M. Putzier et al. “Comparative results between conventional and computer-assisted pedicle screw installation in the thoracic, lumbar, and sacral spine,” Eur Spine J., Vol.25, No.5, pp. 606-614, 2000.
  20. [20] T. Laine, T. Lund, M. Ylikoski et al. “Accuracy of pedicle screw insertion with and without computer assistance: a randomised controlled clinical study in 100 consecutive patients,” Eur Spine J., Vol.9, No.3, pp. 235-240, 2000.
  21. [21] O. Schwarzenbach, U. Berlemann, B. Jost et al. “Accuracy of computer-assisted pedicle screw placement. An in vivo computed tomography analysis,” Spine, Vol.22, No.4, pp. 452-458, 1997.
  22. [22] Y. Ishikawa, T. Kanemura, G. Yoshida et al. “Clinical accuracy of three-dimensional fluoroscopy-based computer-assisted cervical pedicle screw placement: a retrospective comparative study of conventional versus computer-assisted cervical pedicle screw placement,” Neurosurg Spine J., Vol.13, No.5, pp. 606-611, 2010.
  23. [23] V. Ferrari, P. Parchi, S. Condino, M. Carbone, A. Balugan, M. Ferrari, F. Mosca, and M. Lisanti, “An optimal design for patientspecific templates forpedicle spine screws placement,” Int J Med Robotics Comput Assist Surg, DOI:10.1002/rcs., 1439, 2012.
  24. [24] S. R. Kantelhardt, R. Martinez, S. Baerwinkel et al. “Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement,” Eur Spine J, Vol.20, No.6, pp. 860-868, 2011.
  25. [25] I. H. Lieberman, D. Togawa, M. M. Kayanja et al. “Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: Part I – Technical development and a test case result,” Neurosurgery, Vol.59, No.3, pp. 641-650, 2006.
  26. [26] S. Lu et al., “Accuracy and efficacy of thoracic pedicle screws in scoliosis with patient-specific drill template,” Medical and Biological Engineering and Computing, pp. 1-8, 2012.
  27. [27] R. Wolff, H. Deppe, and T. C. Lueth, “Basic concepts of optical measuring of bone thickness with IR-Beam,” Engineering in Medicine and Biology Society, EMBC, 2011 Annual Int. Conf. of the IEEE, pp. 405-408, 2011.
  28. [28] J. Karjalainen, O. Riekkinen, J. Toyras, H. Kroger, and J. Jurvelin, “Ultrasonic assessment of cortical bone thickness in vitro and in vivo,” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Trans. on, Vol.55, No.10, pp. 2191-2197, 2008.
  29. [29] S. Hakim, K. Watkin, M. Elahi, and L. Lessard, “Measurement of cranial bone thickness using A-mode ultrasound,” Engineering in Medicine and Biology Society, 1997, Proc. of the 19th Annual Int. Conf. of the IEEE, Vol.2, pp. 613-616, 1997.
  30. [30] S. H. Tretbar, P. K. Plinkert, and P. A. Federspil, “Accuracy of ultrasound measurements for skull bone thickness using coded signals,” Biomedical Engineering, IEEE Trans. on, Vol.56, No.3, pp. 733-740, 2009.
  31. [31] Y. Sun, “Ultrasound Characterization of Structure and Density of Coral as a Model for Trabecular Bone,” PhD diss., Worcester Polytechnic Institute, 2000.
  32. [32] U. W Geisthoff et al., “Improved ultrasound-based navigation for robotic drilling at the lateral skull base,” Int. Congress Series, Vol.1268, Elsevier, 2004.
  33. [33] H. S. Ronald et al., “Effect of Corneal Hydration on Ultrasound Velocity and Backscatter,” Ultrasound Med Biol, Vol.35, No.5, pp. 839-846, 2009.
  34. [34] A. Hosokawa and T. Otani, “Ultrasonic wave propagation in bovine cancellous bone,” J. Acoust. Soc. Am., Vol.101, pp. 558-562, 1997.
  35. [35] J. H. Chang, D. T. Raphael, Y. P. Zhang, and K. K. Shung, “Proof of concept: In vitro measurement of correlation between radiodensity and ultrasound echo response of ovine vertebral bodies,” Ultrasonics, Vol.51, No.3, pp. 253-257, 2011.
  36. [36] M. Mujagic, H. J. Ginsberg, and R. S. Cobbold, “Development of a method for ultrasound-guided placement of pedicle screws,” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Trans. on, Vol.55, No.6, pp. 1267-1276, 2008.
  37. [37] P. Heini, E. Scholl, D.Wyler, and S. Eggli, “Fatal cardiac tam- ponade associated with posterior spinal instrumentation: A case report,” Spine, Vol.23, pp. 2226-2230, 1998.
  38. [38] A. R. Vaccaro, S. J. Rizzolo, R. A. Balderston, T. J. Allardyce, S. R. Garfin, C. Dolinskas, and H. S An, “Placement of pedicle screws in the thoracic spine. Part II: An anatomical and radiographic assessment,” J Bone Joint Surg Am, Vol.77, pp. 1200-1206, 1995.
  39. [39] K. D. Kim, J. P. Johnson, B. O. Bloch, and J. E. Masciopinto, “Computer-assisted thoracic pedicle screw placement: an in vitro feasibility study,” Spine, pp. 360-364, 2001.
  40. [40] A. R. Vaccaro, S. J. Rizzolo, T. J. Allardyce, M. Ramsey, J. Salvo, R. A. Balderston, and J. M. Cotler, “Placement of pedicle screws in the thoracic spine. Part I: Morphometric analysis of the thoracic vertebrae,” J Bone Joint Surg Am, Vol.77, pp. 1193-1199, 1995.
  41. [41] R. Xu, N. A. Ebraheim, Y. Ou, and R. A. Yeasting, “Anatomic considerations of pedicle screw placement in the thoracic spine. Roy-Camille technique versus open-lamina technique,” Spine, Vol.23, pp. 1065-1068, 1998.
  42. [42] U. R. Liljenqvist, H. F. Halm, and T. M. Link, “Pedicle screw instrumentation of the thoracic spine in idiopathic scoliosis,” Spine, Vol.22, pp. 2239-2245, 1997.
  43. [43] J. J. Carbone, P. J. Tortolani, and L. G. Quartararo, “Fluoroscopically assisted pedicle screw fixation for thoracic and thoracolumbar injuries: technique and short-term complications,” Spine, Vol.28, pp. 91-97, 2003.
  44. [44] Y. R. Rampersaud, K. T. Foley, A. C. Shen, S. Williams, and M. Solomito, “Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion,” Spine, Vol.25, pp. 2637-2645, 2000.
  45. [45] B. J. Shin, A. R. James, I. U. Njoku, and R. Härtl, “Pedicle screw navigation: a systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion,” J. of Neurosurgery: Spine, Vol.17, No.2, pp. 113-122, 2012.
  46. [46] T.-S. Fu et al., “Pedicle screw insertion: computed tomography versus fluoroscopic image guidance,” Int. orthopaedics Vol.32, No.4, pp. 517-521, 2008.
  47. [47] P. Nicholson and R. Alkalay, “Quantitative ultrasound predicts bone mineral density and failure load in human lumbar vertebrae,” Clinical Biomechanics, Vol.22, No.6, pp. 623-629, 2007.
  48. [48] A. Keith Wear, “Autocorrelation and cepstral methods for measurement of tibial cortical thickness,” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Trans. on, Vol.50, No.6, pp. 655-660, 2003.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Nov. 12, 2018