Paper:
An Efficient Super Resolution Based on Image Dimensionality Reduction Using Accumulative Intensity Gradient
Muhammad Haris*, Kazuhito Sawase*,
Muhammad Rahmat Widyanto**, and Hajime Nobuhara*
*Department of Intelligent Interaction Technologies, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
**Computer Science Faculty, University of Indonesia, Depok, West Java, Indonesia
- [1] W. Freeman, T. Jones, and E. Pasztor, “Example-based superresolution,” Computer Graphics and Applications, IEEE, Vol.22, No.2, pp. 56-65, Mar./Apr. 2002.
- [2] J. Qiao, J. Liu, and C. Zhao, “A Novel SVM-Based Blind Super-Resolution Algorithm,” In Int. Joint Conf. on Neural Networks 2006 (IJCNN ’06), pp. 2523-2528, 2006.
- [3] N. Asuni and A. Giachetti, “Accuracy Improvements and Artifacts Removal in Edge Based Image Interpolation,” VISAPP’08, No.1, pp. 58-65, 2008.
- [4] R. Hardie, “A Fast Image Super-Resolution Algorithm Using an Adaptive Wiener Filter,” IEEE Trans. on Image Processing, Vol.16, pp. 2953-2964, 2007.
- [5] G. Freedman and R. Fattal, “Image and Video Upscaling from Local Self-Examples,” ACM Trans. Graph., Vol.28, No.3, pp. 1-10, 2010.
- [6] Y. Shuyuan, L. Zhizhou,W. Min, S. Fenghua, and J. Licheng, “Multitask dictionary learning and sparse representation based singleimage super-resolution reconstruction,” Neurocomputing, Vol.74, No.17, pp. 3193-3203, 2011.
- [7] B. Ahrens, “Genetic Algorithm Optimization on Super Resolution Parameters,” Genetic and Evolutionary Computation, Vol.1, pp. 58-65, 2005.
- [8] D. Glasner, S. Bagon, and M. Irani, “Super-Resolution from a Single Image,” ICCV’09, 2009.
- [9] Q. Shan, Z. Li, J. Jia, and C.-K. Tang, “Fast Image/Video Upsampling,” ACM Trans. on Graphics (SIGGRAPH ASIA), 2008.
- [10] C.-Y. Yang, J.-B. Huang, and M.-H. Yang, “Exploiting selfsimilarities for single frame super-resolution,” Proc. of the 10th Asian Conf. on Computer Vision, pp. 497-510, 2011.
- [11] L. C. Pickup, S. J. Roberts, and A. Zisserman, “Optimizing and Learning for Super-resolution,” Proc. of the British Machine Vision Conf., 2006.
- [12] M. Nuno-Maganda and M. Arias-Estrada, “Real-time FPGA-based architecture for bicubic interpolation: an application for digital image scaling,” Int. Conf. on Reconfigurable Computing and FPGAs 2005 (ReConFig 2005), 2005.
- [13] X. Li and M. T. Orchard, “New Edge-Directed Interpolation,” IEEE Trans. on Image Processing, Vol.10, pp. 1521-1527, 2001.
- [14] M.-J. Chen, C.-H. Huang., and W.-L. Lee, “A fast edge-oriented algorithm for image interpolation,” Image and Vision Computing, Vol.23, No.9, pp. 791-798, 2005.
- [15] K. Hirakawa and T. Parks, “Adaptive homogeneity-directed demosaicing algorithm,” IEEE Trans. on Image Processing, Vol.14, No.3, pp. 360-369, 2005.
- [16] A. Giachetti and N. Asuni, “Real time artifact-free image upscaling,” IEEE Trans. on Image Processing, Vol.20, No.10, pp. 2760-2768, October 2011.
- [17] M. Haris, K. Sawase, T. Sawada, K. Kamijima, M. R. Widyanto, and H. Nobuhara, “Parameter Optimization Of Fast Curvature Based Interpolation Using Genetic Algorithm,” ISCIIA’12, 2012.
- [18] Z.Wang and A. Bovik, “Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures,” Signal ProcessingMagazine, IEEE, Vol.26, No.1, pp. 98-117, 2009.
- [19] R. Ehsani, S. Sankaran, J. Maja, and F. Garcia, “Advanced Tree-Stress-Detection Technologies For Citrus,” Citrus Industry, pp. 6-7, May 2012.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.