Paper:
Classification of Informative Reviews Based on Personal Values
Yasufumi Takama, Zhongjie Mao, and Shunichi Hattori
Graduate School of System Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino, Tokyo 191-0065, Japan
- [1] K. Fujimoto, “An Investigation of Potency of eWOM Messages with a Focus on Subjective Rank Expressions,” WI-IAT2010, pp. 97-101, 2010.
- [2] K. Fujimoto, “A Computational Account of Potency Differences in eWOM Messages Involving Subjective Rank Expressions,” WIIAT2011, pp. 138-142, 2011.
- [3] S. Hattori and Y. Takama, “Investigation About Applicability of Personal Values for Recommender System,” J. of Advanced Computational Intelligence and Intelligent Informatics, Vol.16, No.3, pp. 404-411, 2012.
- [4] S. Hattori, Z. Mao, and Y. Takama, “Proposal of User Modeling Method and Recommender System based on Personal Values,” SCIS&ISIS2012, F3-45-3, 2012.
- [5] S. Hattori and Y. Takama, “Proposal of User Modeling Method Employing Reputation Analysis on User Reviews Based on Personal Values,” JSAI2013 Int. Organized Session, 1A3-IOS-3a-4, 2013.
- [6] M. B. Holbrook, “Consumer Value: A Framework for Analysis and Research,” Routledge, 1999.
- [7] M. Rokeach, “The Nature of Human Values,” New York: The Free Press, 1973.
- [8] D. E. Vinson, J. E. Scott, and L. M. Lamont, “The Role of Personal Values in Marketing and Consumer Behavior,” The J. of Marketing, Vol.41, No.2, pp. 44-50, 1977.
- [9] Y. Kim and K. Shim, “TWITOBI: A Recommendation System for Twitter Using Probabilistic Modeling,” ICDM2011, pp. 340-349, 2011.
- [10] Z. Ren, J. Ma, G. Wang, C. Cui, and X. Han, “Dynamically Modeling Semantic Dependencies in Web Forum Threads,” WI-IAT2011, pp. 348-351, 2011.
- [11] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and R. Zadeh, “WTF: TheWho to Follow Service at Twitter,” WWW’13, pp. 505-514, 2013.
- [12] Q. Gao, F. Abel, G.-J. Houben, and K. Tao, “Interweaving Trend and User Modeling for Personalized News Recommendation,” WIIAT’ 11, pp. 100-103, 2011.
- [13] T. Hua, F. Chen, L. Zhao, C.-T. Lu, and N. Ramakrishnan, “STED: Semi-supervised Targeted-interest Event Detection in Twitter,” KDD’13, pp. 1466-1469, 2013.
- [14] A. Ritter, Mausam, O. Etzioni, and S. Clark, “Open Domain Event Extraction from Twitter,” KDD’12, pp. 1104-1112, 2012.
- [15] X. Meng, F. Wei, X. Liu, M. Zhou, S. Li, and H. Wang, “Entity-centric Topic-oriented Opinion Summarization in Twitter,” KDD’12, pp. 379-387, 2012.
- [16] L. Hong, A. Ahmed, S. Gurumurthy, A. Smola, and K. Tsioutsiouliklis, “Discovering Geographical Topics In The Twitter Stream,” WWW’12, pp. 769-778, 2012.
- [17] D. Gruhl, R. Guha, R. Kumar, J. Novak, and A. Tomkins, “The Predictive Power of Online Chatter,” KDD’05, pp. 78-87, 2005.
- [18] Y. Liu, X. Huang, A. An, and X. Yu, “ARSA: A Sentiment-Aware Model for Predicting Sales Performance Using Blogs,” SIGIR’07, pp. 607-614, 2007.
- [19] Y. Sasaki, “Driving Forces in Product Selection Evaluation Sites, Magazines, andWord of Mouth Information ��� A Research on Users of a Cosmetics Product Evaluation Site,” J. of Information and Media Studies, Vol.3, No.1, pp. 29-42, 2004.
- [20] J. Stewart, H. Strong, J. Parker, and M. A. Bedau, “Twitter Keyword Volume, Current Spending, and Weekday Spending Norms Predict Consumer Spending,” ICDM2012 Workshops, pp. 747-753, 2012.
- [21] N. Glance, M. Hurst, K. Nigam, M. Siegler, R. Stockton, and T. Tomokiyo, “Deriving Marketing Intelligence from Online Discussion,” KDD’05, pp. 419-428, 2005.
- [22] E. Adar and L. A. Adamic, “Tracking Information Epidemics in Blogspace,” WI’05, pp. 207-214, 2005.
- [23] R. Kumar, J. Novak, P. Raghavan, and A. Tomkins, “On the Bursty Evolution of Blogspace,” WWW’03, pp. 568-576, 2003.
- [24] B. L. Tseng, J. Tatemura, and Y. Wu, “Tomographic Clustering to Visualize Blog Communities as Mountain Views,” WWW2005 Workshop on the Weblogging Ecosystem: Aggregation, Analysis and Dynamics, 2005.
- [25] M. Gamon and A. Aue (Eds.), Proc. Workshop on Sentiment and Subjectivity in Text, 2006.
- [26] J. G. Shanahan, Y. Qu, and J. Wiebe, “Computing Attitude and Affect in Text: Theory and Applications,” Springer, 2006.
- [27] V. Hatzivassiloglou and K. R. McKeown, “Predicting the Semantic Orientation of Adjectives,” Proc. ACL97, pp. 174-181, 1997.
- [28] J. Broß and H. Ehrig, “Generating Context-Aware Sentiment Lexicon for Aspect-Based Product Review Mining,” WI-IAT2010, pp. 435-439, 2010.
- [29] C. Whitelaw, N. Garg, and S. Argamon, “Using Appraisal Groups for Sentiment Analysis,” CIKM2005, pp. 625-631, 2005.
- [30] B. Pang, L. Lee, and S. Vaihyanathan, “Thumbs Up? Sentiment Classification UsingMachine Learning Techniques,” Proc. EMNLP, pp. 79-86, 2002.
- [31] P. D. Turney, “Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews,” Proc. ACL, pp. 417-424, 2002.
- [32] T. Hirayama, T. Yumoto, M. Nii, and Y. Takahashi, “Extraction and Presentation of Product Reputation by Attribute Evaluation Model,” DEIM2011, F2-5, 2011 (in Japanese).
- [33] T. Konishi, T. Tezuka, F. Kimura, and A. Maeda, “Review Portfolio by Statistical Methods,” DEIM2010, A9-4, 2010 (in Japanese).
- [34] R. Seto and T. Satoh, “Feature-Based Reputation Browser Using Product Descriptions,” DEIM2009, C6-5, 2009 (in Japanese).
- [35] S. T. K. Lam and J. Riedl, “Shilling Recommender Systems for Fun and Profit,” Proc. 13th Int. Conf. on World Wide Web, pp. 393-402, 2004.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.