single-jc.php

JACIII Vol.17 No.6 pp. 818-827
doi: 10.20965/jaciii.2013.p0818
(2013)

Paper:

An Automatic Three-Dimensional Evaluation of Screw Placement After Anterior Cruciate Ligament Reconstruction Using MDCT Images

Yosuke Uozumi*1, Kouki Nagamune*2,*3, Yuichiro Nishizawa*3,
Daisuke Araki*3, Yuichi Hoshino*3,*4, Takehiko Matsushita*3,
Ryosuke Kuroda*3, and Masahiro Kurosaka*3

*1Department of Advanced Interdisciplinary Science and Techonology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan

*2Department of Human and Artificial Intelligence Systems, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan

*3Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan

*4Kaisei Hospital, 3-11-15 Shinohara Kitamachi, Nada-ku, Kobe 657-0068, Japan

Received:
March 29, 2013
Accepted:
September 17, 2013
Published:
November 20, 2013
Keywords:
ACL reconstruction, MDCT image, screw, coordinate system, image registration
Abstract

A metallic interference screw, which is a fixation device used in anterior cruciate ligament (ACL) reconstruction, is important for fixing the grafts to the tibia. Loosening of fixation sometimes happens because the screw is displaced time passes, which results in instability of the knee. It is therefore important to analyze screw displacement highly accurately. The purpose of this study is to propose an evaluation of screw displacement in MDCT imaging of the knee after ACL reconstruction. Clinical experiments used 22 MDCT images that are not displaced in the clinical sense. Results of simulation experiments show that error was 0.14 mm, which was less thanMDCT image resolution. This study concluded that the proposed method useful in evaluating two MDCT images at different time points.

Cite this article as:
Y. Uozumi, K. Nagamune, Y. Nishizawa, <. Araki, Y. Hoshino, T. Matsushita, <. Kuroda, and M. Kurosaka, “An Automatic Three-Dimensional Evaluation of Screw Placement After Anterior Cruciate Ligament Reconstruction Using MDCT Images,” J. Adv. Comput. Intell. Intell. Inform., Vol.17, No.6, pp. 818-827, 2013.
Data files:
References
  1. [1] G. Li, L. E. DeFrate, H. E. Rubash, and T. J. Gill, “In vivo kinemetics of the ACL during weight-bearing knee flexion,” J. Orthop. Res., Vol.23, No.2, pp. 340-344, 2005.
  2. [2] K. Samuelsson, D. Andersson, and J. Karlsson, “Treatment of anterior cruciate ligament injuries with special reference to graft type and surgical technique: an assessment of randomized controlled trials,” Arthroscopy., Vol.25, No.10, pp. 1139-1174, 2009.
  3. [3] J. Orchard, I. Chivers, D. Aldous, K. Bennell, and H. Seward, “Rye grass is associated with fewer non-contact anterior cruciate ligament injuries than bermuda grass,” Br. J. Sports Med., Vol.39, No.10, pp. 704-709, 2005.
  4. [4] P. Rochcongar, E. Laboute, J. Jan, and C. Carling, “Ruptures of the anterior cruciate ligament in soccer,” Int. J. Sports Med., Vol.30, No. 5, pp. 372-378, 2009.
  5. [5] L. J. Micheli, J. D. Metzl, Di J. Canzio, and D. Zurakowski, “Anterior cruciate ligament reconstructive surgery in adolescent soccer and basketball players,” Clin. J. Sports Med., Vol.9, No.3, pp. 138-141, 1999.
  6. [6] H. Negahban, M. R. Hadian, M. Salavati, M.Mazaheri, S. Talebian, A. H. Jafari, and M. Parnianpour, “The effects of dual-tasking on postural control in people with unilateral anterior cruciate ligament injury,” Gait Posture., Vol.30, No.4, pp. 477-481, 2009.
  7. [7] B. Engström, M. Forssblad, C. Johansson, and H. Törnkvist, “Does a major knee injury definitely sideline an elite soccer player?,” Am. J. Sports Med., Vol.18, No.1, pp. 101-105, 1990.
  8. [8] A. Meunier, M. Odensten, and L. Good, “Long-term results after primary repair or non-surgical treatment of anterior cruciate ligament rupture: a randomized study with a 15-year follow-up,” Scand. J. Med. Sci. Sports., Vol.17, No.3, pp. 230-237, 2007.
  9. [9] D. Andersson, K. Samuelssonm, and J. Karlsson, “Treatment of anterior cruciate ligament injuries with special reference to surgical technique and rehabilitation: an assessment of randomized controlled trials,” Arthroscopy, Vol.25, No.6, pp. 653-685, 2009.
  10. [10] P. Neuman, M. Englund, I. Kostogiannis, T. Fridén, H. Roos, and L. E Dahlberg, “Prevalence of tibiofemoral osteoarthritis 15 years after nonoperative treatment of anterior cruciate ligament injury: a prospective cohort study,” Am. J. Sports Med., Vol.36, No.9, pp. 1717-1725, 2008.
  11. [11] B. Beynnon, R. Johnson, J. Abate, B. Fleming, and C. Nichols, “Treatment of anterior cruciate ligament injuries, Part I,” Am. J. Sports Med., Vol.33, No.10, pp. 1579-1602, 2005.
  12. [12] B. Beynnon, R. Johnson, J. Abate, B. Fleming, and C. Nichols, “Treatment of anterior cruciate ligament injuries, Part II,” Am. J. Sports Med., Vol.33, No.11, pp. 1751-1767, 2005.
  13. [13] M. Yagi, R. Kuroda, K. Nagamune, S. Yoshiya, and M. Kurosaka, “Double-bundle ACL reconstruction can improve rotational stability,” Clin. Orthop. Relat. Res., Vol.454, pp. 100-107, 2007.
  14. [14] M. Kurosaka, S. Yoshiya, and J. T. Andrish, “A biomechanical comparison of different surgical techniques of graft fixation in anterior cruciate ligament reconstruction,” Am J Sports Med 15, 225-229, 1987.
  15. [15] L. A. Pinczewski, J. Lyman, L. J. Salmon, V. J. Russell, J. Roe, and J. Linklater, “A 10-year comparison of anterior cruciate ligament reconstructions with hamstring tendon and patellar tendon autograft: a controlled, prospective trial,” Am J Sports Med 35, 564-574, 2007.
  16. [16] G. Cerullo and G. Puddu, “Arthroscopic placement of the interference screw for anterior cruciate ligament reconstruction,” Arthroscopy 9, 712-713, 1993.
  17. [17] D. Kohn and C. Rose, “Primary stability of interference screw fixation. Influence of screw diameter and insertion torque,” Am J Sports Med 22, 334-338, 1994.
  18. [18] C. S. Ahmad, T. R. Gardner, M. Groh, J. Arnouk, and W. N. Levine, “Mechanical properties of soft tissue femoral fixation devices for anterior cruciate ligament reconstruction,” Am J Sports Med 32, 635-640, 2004.
  19. [19] A. L. Doerr Jr. B. T. Cohn, M. J. Ruoff, and V. K. McInerny, “A complication of interference screw fixation in anterior cruciate ligament reconstruction,” Orthop Rev 19, 997-1000, 1990.
  20. [20] C. A. Bush-Joseph and B. R. Bach Jr., “Migration of femoral interference screw after anterior cruciate ligament reconstruction,” Am J Knee Surg 11, 32-34, 1998.
  21. [21] D. S. Sidhu and R. R.Wroble, “Intraarticular migration of a femoral interference fit screw. A complication of anterior cruciate ligament reconstruction,” Am J Sports Med 25, 268-271, 1997.
  22. [22] S. L. Karlakki and M. E. Downes, “Intra-articular migration of femoral interference screw: Open or arthroscopic removal,” Arthroscopy 19, E19, 2003
  23. [23] G. Milano, P. D. Mulas, F. Ziranu, S. Piras, A. Manunta and C. Fabbriciani, “Comparison between different femoral fixation devices for ACL reconstruction with doubled hamstring tendon graft: a biomechanical analysis,” Arthroscopy 22, 660-668, 2006.
  24. [24] C. J. Micucci, D. A. Frank, J. Kompel, M. Muffly, P. J. DeMeo and G. T. Altman, “The effect of interference screw diameter on fixation of soft-tissue grafts in anterior cruciate ligament reconstruction,” Arthroscopy 26, 1105-1110, 2010.
  25. [25] A. Werner, A. Wild, A. Ilg, and R. Krauspe, “Secondary intraarticular dislocation of a broken bioabsorbable interference screw after anterior cruciate ligament reconstruction,” Knee Surg Sports Traumatol Arthr 10, 30-32, 2002.
  26. [26] E. Monaco, L. Labianca, A. Speranza, M. Agrò, G. Camillieri, C. D’Arrigo, and A. Ferretti, “Biomechanical evaluation of different anterior cruciate ligament fixation techniques for hamstringgraft,” J Orthop Sci. 15, 125-131, 2010.
  27. [27] S. H. Wei, K. J. McQuade, and G. L. Smidt, “Three-dimensional joint range of motion measurements from skeletal coordinate data,” J Orthop Sports Phys Ther 18, 687-691, 1993.
  28. [28] K. Nagamune, D. Araki, K. Nishimoto, Y. Hoshino, S. Kubo, R. Kuroda, and M. Kurosaka, “An evaluation method of EndoButton position in MDCT image after anterior cruciate ligament reconstruction,” IEEE Int. Conf. on System, 1334-1337, 2009.
  29. [29] Y. Uozumi, K. Nagamune, T. Matsushita, S. Kubo, R. Kuroda, and M. Kurosaka, “Six degree-of-freedom calculation based on principal component analysis for the knee joint in MDCT image,” IEEE Int. Conf. on Fuzzy Systems, 1436-1441, 2011.
  30. [30] Y. Hoshino, R. Kuroda, K. Nagamune, M. Yagi, K. Mizuno, M. Yamaguchi, H. Muratsu, S. Yoshiya, and K. Masahiro, “In vivo measurement of the pivot-shift test in the anterior cruciate ligament ? deficient knee using an electromagnetic device,” Am J Sports Med 35, 1098-1104, 2007.
  31. [31] M. Rohrbach, M. Luem, and P. E. Ochsner, “Patient and surgery related factors associated with fatigue type polyethylene wear on 49 PCA and DURACON retrievals at autopsy and revision,” J Orthop Surg Res 3, 8, 2008.
  32. [32] J. R. Moreland, L.W. Bassett, and G. J. Hanker, “Radiographic analysis of the axial alignment of the lower extremity,” J Bone Joint Surg Am 69, 745-749, 1987.
  33. [33] A. Ariumi, T. Sato, K. Kobayashi, Y. Koga, G. Omori, I. Minato, and N. Endo, “Three-dimensional lower extremity alignment in the weight-bearing standing position in healthy elderly subjects,” J Orthop Sci 15, 64-70, 2010.
  34. [34] G. M. Snyder and D. L. Johnson, “Anatomic graft placement in ACL surgery: plain radiographs are all we need,” Orthopedics 34, 116-118, 2011.
  35. [35] S. M. Howell, P. Roos, and M. L. Hull, “Compaction of a bone dowel in the tibial tunnel improves the fixation stiffness of a soft tissue anterior cruciate ligament graft an in vitro study in calf tibia,” Am J Sports Med 33, 719-725, 2005.
  36. [36] E. M. Goble, D. J. Downey, and T. R. Wilcox, “Positioning tibial tunnel for anterior cruciate ligament reconstruction,” Arthroscopy 11, 688-695, 1995.
  37. [37] J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever, “Mutualinformation-based registration of medical images: a survey,” IEEE Trans Med Imaging 22, 986-1004, 2003.
  38. [38] F. R. Noyes, “Arthroscopically assisted posterior cruciate ligament reconstruction: the all-inside technique and the tibial inlay technique using double bundle quadriceps tendon bone autograft,” Tech Knee Surg 20, e23-e28, 2003.
  39. [39] J. Chouteau, J. L. Lerat, R. Testa, B. Moyen, and S. A. Banks, “Effects of radiograph projection parameter uncertainty on TKA kinematics from model-image registration,” 40, 3744-3747, 2007.
  40. [40] W. H. Castro, H. Halm, J. Jerosch, J. Malms, J. Steinbeck, and S. Blasius, “Accuracy of pedicle screw placement in lumbar vertebrae,” Spine 21, 1320-1324, 1996.
  41. [41] S. I. Esses, B. L. Sachs, and V. Dreyzin, “Complications associated with the technique of pedicle screw fixation,” A selected survey of ABS members. Spine 18, 2231-2238, 1993.
  42. [42] O. Schwarzenbach, U. Berlemann, B. Jost, H. Visarius, E. Arm, F. Langlotz, L. P. Nolte, and C. Ozdoba, “Accuracy of computerassisted pedicle screw placement,” An in vivo computed tomography analysis. Spine 22, 452-458, 1997.
  43. [43] W. C.Welch, B. R. Subach, I. F. Pollack, and G. B. Jacobs, “Frameless stereotactic guidance for surgery of the upper cervical spine,” Neurosurgery 40, 958-963, 1997.
  44. [44] P. Brucker, B. Zelle, and F. Fu, “Intraarticular EndoButton displacement in anatomic anterior cruciate ligament double-bundle rerconstruction: A case report,” Oper Tech Orthop, 15, 154-157, 2005.