Paper:
Distance Measure for Symbolic Approximation Representation with Subsequence Direction for Time Series Data Mining
Tianyu Li, Fang-Yan Dong, and Kaoru Hirota
Department of Computational Intelligence & Systems Science, Tokyo Institute of Technology, G3-49, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
- [1] J. Lin and E. Keogh, “A Symbolic Representation of Time Series, with Implications for Streaming Algorithms,” 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pp. 2-11, 2003.
- [2] B. Lkhagava, Y. Suzuki, and K. Kawagoe, “Extended SAX: Extension of Symbolic Aggregate Approximation for Financial Time Series Data Representation,” Data Engineering Workshop, 2006.
- [3] M. M. M. Fuad and P. F. Marteau, “Enhancing the Symbolic Aggregate Approximation Method Using Updated Lookup Tables,” Knowledge-Based and Intelligent Information and Engineering Systems, pp. 420-431, 2010.
- [4] G. Li, L. P. Zhang, and L. Q. Yang, “TSX: A Novel Symbolic Representation for Financial Time series,” Trends in Artificial Intelligence, pp. 262-273, 2012.
- [5] H. Ding and E. Keogh, “Querying and Mining of Time Series Data: Experimental Comparison of Representations and Distance Measures,” Proc. of VLDB Endowment, Vol.1, Issue 2, pp. 1542-1552, 2010.
- [6] B. K. Yi and C. Faloutsos, “Fast Time Sequence Indexing for Arbitrary Lp Norms,” Processing of the Very Large Database, pp. 385-394, 2000.
- [7] E. Keogh, Q. Zhu, B. Hu, Y. Hao, X. Xi, L. Wei, and C. A. Ratanamahatana, “The UCR Time Series Classification/Clustering,” 2011.http:/www.cs.ucr.edu/˜eamonn/time_series_data/
- [8] X. Wang, H. Ding, G. Trajcevski, P. Scheuermann, and E. Keogh, “Experimental comparison of representation methods and distance measures for time series data,” Proc. of CoRR, 2010.
- [9] P. Siirtola, H. Koskimaki, V. Huikari, P. Laurinen, and J. Roning, “Improving the classification accuracy of stream data using SAX similarity features,” Pattern Recognition Letters, Vol.32, Issue 13, pp. 1659-1668, 2011.
- [10] A. Sant’Anna, N. Wickstrom, and A. Salarian, “A new measure of movement symmetry in early Parkinson’s disease patients using symbolic processing of inertial sensor data,” IEEE Trans. Biomed. Engineering, Vol.58, Issue 7, pp. 2127-2135, 2011.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.