Paper:
Thermal Unit Scheduling for CO2 Reduction Including Wind Power and Electric Vehicles
Daiki Yamashita*, Ryuichi Yokoyama*, and Takahide Niimura**
*Department of Environment and Energy Engineering, Waseda University, 55th Building S-Wing 705, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
**Visiting Researcher, Faculty of Economics, Hosei University, 4342 Aihara, Machida, Tokyo, Japan
- [1] A. DeMeo, W. Grant, M. R. Milligan, and M. J. Schuerger, “Wind Plants Integration,” IEEE Power and Energy Magazine, Vol.3, Issue 6, pp. 38-46, November/December 2005.
- [2] T. Ackermann et al., “Where the wind blows,” IEEE Power and Energy Magazine, Vol.7, Issue 6, pp. 65-75, November/December 2009.
- [3] European Wind Energy Association, “Large Scale Integration of Wind Energy in The European Power Supply,” December 2005.
available: http://www.ewea.org - [4] H. Banakar, C. Luo, and B. T. Ooi, “Impacts of Wind Power Minute-to-Minute Variations on Power System Operation,” IEEE Trans. on Power Systems, Vol.23, Issue 1, pp. 150-160, June 2008.
- [5] C. Luo and B. T. Ooi, “Frequency Deviation of Thermal Power Plants Due to Wind Farms,” IEEE Trans. Energy Conv., Vol.21, No.3, pp. 708-716, September 2006.
- [6] T. Michigami, “Construction of Dynamic Fluctuation Load Model and Simulation with AFC-control of BTB Interconnection,” Proc. of Fukui University of Technology, Vol.2, No.30, pp. 1-8, Mar. 2000.
- [7] A. M. Foley, P. G. Leahy, and E. J. McKeogh, “Wind Power Forecasting and Prediction Methods,” IEEE 9th Int. Conf. on Environmental and Electrical Engineering, May 2010.
- [8] B. Ernst et al., “Predicting theWind,” IEEE Power and Energy Magazine, pp. 78-89, November/December 2007.
- [9] K. Mathaprayoon et al., “An Integration of ANN Wind Power Estimation Into Unit Commitment Considering the Forecasting Uncertainty,” IEEE Trans., Industrial Applications, Vol.43, No.6, pp. 1441-1448, Nov./Dec. 2007.
- [10] J. M. Morales, A. J. Conejo, and J. Perez-Ruiz, “Economic Valuation of Reserves in Power Systems With High Penetration of Wind Power,” IEEE Trans. Power Systems, Vol.24, No.2, pp. 900-910, May 2009.
- [11] A. G. Boulanger, A. C. Chu, S. Maxx, and D. L. Waltz, “Vehicle Electrification: Status and Issues,” Proc. of the IEEE, Vol.99, No.6, pp. 1116-1138, June 2011.
- [12] J. A. Schellenberg andM. J. Sullivan, “Electric vehicle forecast for a large West Coast utility,” Power and Energy Society General Meeting, 2011 IEEE, pp. 1-6, July 2011.
- [13] J. Voelcker, “Can Plug-In Hybrid Electric Vehicles Keep the Electric Grid Stable?,” IEEE Spectrum Inside Technology, Oct. 2007.
- [14] F. Musavi, M. Edington, W. Eberle, and W. G. Dunford, “Evaluation and Efficiency Comparison of Front End AC-DC Plug-in Hybrid Charger Topologies,” IEEE Transactions on Smart Grid, Vol.3, No.1, pp. 413-421, 2012.
- [15] D. Yamashita, T. Niimura, R. Yokoyama, and M. Marmiroli, “Thermal Unit Scheduling for CO2 Reduction including Significant Wind Power Penetration,” presented at IEEE 2011 PES General Meeting, July 2011, Detroit, USA, 2011.
- [16] F. D. Galialna et al., “Scheduling and Pricing of Coupled Energy and Primary, Secondary, and Tertiary Reserves,” Proc. IEEE, Vol.93, No.11, November 2005.
- [17] J. F. Restrepo and F. D. Galiana, “Unit Commitment With Primary Frequency Regulation Constraints,” IEEE Trans. Power Syst., Vol.20, No.4, pp. 1836-1842, November 2005.
- [18] C. Li, R. B. Johnson, and A. J. Svoboda, “A new unit commitmentmethod,” IEEE Trans. on Power Systems, Vol.12, pp. 113-119, 1997.
- [19] C. L. Tseng, C. A. Li, and S. S. Oren, “Solving the Unit Commitment Problem by a Unit Decommitment Method,” J. of Optimization Theory and Applications, Vol.105, No.3, pp. 707-730, 2000.
- [20] N. Jaleeli, D. Ewart, and L. H. Fink, “Understanding Automatic Generation Control,” IEEE Trans. Power Syst., Vol.7, No.3, pp. 1106-1122, August 1992.
- [21] Y. Sawaragi, H. Nakayama, and T. Tanino, “Theory of multiobjective optimization,” Orlando: Academic Press, 1985.
- [22] T. Niimura and T. Nakashima, “Multiobjective tradeoff analysis of deregulated electricity Trans.,” Electrical Power and Energy Systems, Vol.25, pp. 179-185, 2003.
- [23] P. Attaviriyanupap, H. Kita, E. Tanaka, and J. Hasegawa, “A Hybrid LR-EP for Solving New Profit-Based UC Problem Under Competitive Environment,” IEEE Trans. on Power Systems, Vol.18, No.1, pp. 229-237, 2003.
- [24] “Installed Wind Power Plants,” New Energy and Industrial Technology Development Organization of Japan, April 2010.
- [25] A. Kossoy and P. Ambrosi, “State and Trends of the Carbon Market 2010,” Environment Department, World bank, May 2010.
- [26] K. J. Yunus, M. Reza, H. Zelaya, De La Parra, and K. Srivastava, “Impacts of Stochastic Residential Plug-In Electric Vehicle Charging on Distribution Grid,” 2012 IEEE Innovative Smart Grid Technologies, Washington, DC, January 2012.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.