Paper:
On Entropy Based Fuzzy Non Metric Model – Proposal, Kernelization and Pairwise Constraints –
Yasunori Endo
Faculty of Engineering, Information and Systems, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
- [1] J. C. Bezdek, “Pattern Recognition with Fuzzy Objective Function Algorithms,” Plenum, New York, 1981.
- [2] J. C. Bezdek, J. Keller, R. Krisnapuram, and N. R. Pal, “Fuzzy Models and Algorithms for Pattern Recognition and Image Processing,” The Handbooks of Fuzzy Sets Series, 1999.
- [3] M. Roubens, “Pattern classification problems and fuzzy sets,” Fuzzy Sets and Systems, Vol.1, pp. 239-253, 1978.
- [4] J. C. Bezdek, J. W. Davenport, and R. J. Hathaway, “Clustering with the Relational c-Means Algorithms using Different Measures of Pairwise Distance,” R. D. Juday (Ed.), Proc. of the 1988 SPIE Technical Symp. on Optics, Electro-Optics, and Sensors, Vol.938, pp. 330-337, 1988.
- [5] R. J. Hathaway, J. W. Davenport, and J. C. Bezdek, “Relational Duals of the c-Means Clustering Algorithms,” Pattern Recognition, Vol.22, No.2, pp. 205-212, 1989.
- [6] S. Miyamoto and M. Mukaidono, “Fuzzy c-Means as a Regularization and Maximum Entropy Approach,” Proc. of the 7th Int. Fuzzy Systems Association World Congress (IFSA’97), Vol.2, pp. 86-92, 1997.
- [7] S. Miyamoto, K. Umayahara, and M. Mukaidono, “Fuzzy Classification Functions in the Methods of Fuzzy c-Means and Regularization by Entropy,” J. of Japan Society for Fuzzy Theory and Systems, Vol.10, No.3, pp. 548-557, 1998.
- [8] V. N. Vapnik, “Statistical Learning Theory,” Wiley, New York, 1998.
- [9] V. N. Vapnik, “The nature of Statistical Learning Theory,” 2nd ed., Springer, New York, 2000.
- [10] Y. Endo, H. Haruyama, and T. Okubo, “On Some Hierarchical Clustering Algorithms Using Kernel Functions,” IEEE Int. Conf. on Fuzzy Systems, #1106, 2004.
- [11] R. J. Hathaway, J. M. Huband, and J. C. Bezdek, “A Kernelized Non-Euclidean Relational Fuzzy c-Means Algorithm,” Neural, Parallel and Scientific computation, Vol.13, pp. 305-326, 2005.
- [12] S.Miyamoto, Y. Kawasaki, and K. Sawazaki, “An Explicit Mapping for Fuzzy c-Means Using Kernel Function and Application to Text Analysis,” IFSA/EUSFLAT 2009, 2009.
- [13] K. Wagstaff and C. Cardie, “Clustering with Instance-level Constraints,” Proc. of the 17th Int. Conf. on Machine Learning, pp. 1103-1110, 2000.
- [14] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl, “Constrained k-means clustering with background knowledge,” Proc. of the 18th Int. Conf. on Machine Learning, pp. 577-584, 2001.
- [15] J. Mercer, “Functions of Positive and Negative Type and Their Connection with the Theory of Integral Equations,” Philosophical Trans. of the Royal Society A, Vol.209, pp. 415-446, 1909.
- [16] Y. Endo, R. Murata, H. Haruyama, and S. Miyamoto, “Fuzzy c-Means for Data with Tolerance,” Proc. 2005 Int. Symp. on Nonlinear Theory and Its Applications, pp. 345-348, 2005.
- [17] Y. Kanzawa, Y. Endo, and S. Miyamoto, “Entropy Regularized Fuzzy c-Means for Data with Tolerance introducing Penalty Term in Feature Space,” SCIS&ISIS 2008, 2008.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.