Paper:
On Kernel Fuzzy c-Means for Data with Tolerance Using Explicit Mapping for Kernel Data Analysis
Yuchi Kanzawa*, Yasunori Endo**,
and Sadaaki Miyamoto**
*Shibaura Institute of Technology, 3-7-5 Toyosu, Koto, Tokyo 135-8548, Japan
**University of Tsukuba
- [1] J. C. Bezdek, “Pattern Recognition with Fuzzy Objective Function Algorithms,” Plenun, New York, 1981.
- [2] S. Miyamoto and K. Umayahara, “Methods in Hard and Fuzzy Clustering,” in: Z.-Q. Liu and S. Miyamoto (Eds.), Soft Computing and Human-Centered Machines, Springer-Verlag Tokyo, 2000.
- [3] S. Miyamoto and D. Suizu, “Fuzzy c-Means Clustering Using Kernel Functions in Support Vector Machines,” J. Advanced Computational Intelligence and Intelligent Informatics, Vol.7, No.1, pp. 25-30, 2003.
- [4] V. N. Vapnik, “Statistical Learning Theory,” Wiley, New York, 1998.
- [5] S.Miyamoto, Y. Kawasaki, and K. Sawazaki, “An Explicit Mapping for Kernel Data Analysis and Application to Text Analysis,” Proc. IFSA-EUSFLAT 2009, pp. 618-623, 2009.
- [6] S. Miyamoto and K. Sawazaki, “An Explicit Mapping for Kernel Data Analysis and Application to c-Means Clustering,” Proc. NOLTA 2009, pp. 556-559, 2009.
- [7] R. Murata, Y. Endo, H. Haruyama, and S. Miyamoto, “On Fuzzy c-Means for Data with Tolerance,” J. of Advanced Computational Intelligence and Intelligent Informatics, Vol.10, No.5, pp. 673-681, 2006.
- [8] Y. Kanzawa, Y. Endo, and S. Miyamoto, “Fuzzy c-Means for Data with Tolerance using Kernel Functions,” IEICE Trans., Fund., Vol.E91-A, No.9, pp. 2520-2534, 2008.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.