Paper:
Detection of Lung Nodules in Thoracic MDCT Images Based on Temporal Changes from Previous and Current Images
Shinya Maeda, Yasuyuki Tomiyama, Hyoungseop Kim,
Noriaki Miyake, Yoshinori Itai, Joo Kooi Tan, Seiji Ishikawa,
and Akiyoshi Yamamoto
Department of Control Engineering, Kyushu Institute of Technology, 1-1 Sensui, Tobata, Kitakyushu 804-8550, Japan
- [1] K. Doi, “Current status and future potential of computer-aided diagnosis in medical imaging,” British J. Rad., Vol.78, pp. S3-S19, 2005.
- [2] J. Y. Wei, Y. Hagihara, A. Shimidzu et al., “Optimal image feature set for detecting lung nodules on chest X-ray image,” Proc. of the CARS, pp. 706-711, 2002.
- [3] Y. Lee, T. Hara, H. Fujita et al., “Automatic detection of pulmonary nodules in helical CT images based on an improved templatematching technique,” IEEE Trans. Med. Imaging, Vol.20, pp. 595-604, 2001.
- [4] X. Zhang, G. McLennan, E. A. Hoffman et al., “Automated detection of small-size pulmonary nodules on helical CT images,” Proc. of Int. Conf. on Information Proc. in Medical Imaging., pp. 664-676, 2005.
- [5] S. Kakeda, K. Kamada, and Y. Hatakeyama, “Effect of temporal subtraction on interpretation time and diagnostic accuracy of chest radiography,” American J. of Roenteenology, Vol.187, No.5, pp. 1253-1259, 2006.
- [6] Y. Itai, H. Kim, S. Ishikawa et al., “3D elastic matching for temporal subtraction employing thorax MDCT image,” Proc. of the World Congress on Medical Physics and Biomedical Engineering., pp. 2181-2191, 2006.
- [7] Y. Itai, H. Kim, S. Ishikawa et al., “Development of a voxel matching technique for substantial reduction of subtraction artifacts in temporal subtraction images obtained from thoracic MDCT,” J. of Digital Imaging, Vol.23, No.1, pp. 32-38, 2010.
- [8] N. Miyake, H. Kim, Y. Itai et al., “Automatic detection of lung nodules in temporal subtraction image by use of shape and density features,” Int. Conf. on Innovative Computing, Information and Control, CD-ROM (4 pages), 2009.
- [9] Q. Li, S. Sone, and K. Doi, “Selective enhancement filters for nodules, vessels and airway walls in two- and three-dimensional CT scans,” Med. Phys., Vol.30, pp. 2040-2051, 2003.
- [10] H. Kobatake, W. Jun, and Y. Hagihara, “Nonlinear adaptive filters based on gradient vector orientation,” Prog. of Int. Simp. on Nonlinear Theory and its Applications, pp. 533-556, 1999.
- [11] J.Wang, R. Englman, and Q. Li, “Segmentation of pulmonary nodules in three-dimentional CT images by use of a spiral-scanning technique,” Med, Phys., Vol.34, No.12, pp. 4678-4689, 2007.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.