Paper:
Learning of Obstacle Avoidance with Redundant Manipulator by Hierarchical SOM
Yuichi Kobayashi and Takahiro Nomura
Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- [1] Z. W. Luo and M. Ito, “Diffusion-based learning theory for organizing visuo-motor coordination,” Biological Cybernetics, Vol.79, pp. 279-289, 1998.
- [2] K. Ueno, K. Horio, T. Yamakawa, and K. Ishii, “A method to solve inverse kinematics of redundant manipulator using topology representing network,” Proc. of SICE Annual Conf. 2005, pp. 2865-2870, 2005.
- [3] P. Jorg and A. Walter, “PSOM network: Learning with few examples,” Proc. of Int. Conf. on Robotics and Automation, pp. 2054-2059, 1998.
- [4] Y. Zhang and J. Wang, “Obstacle Avoidance for Kinematically Redundant Manipulators Using a Dual Neural Network,” IEEE Trans. on Systems, Man, and Cybernetics (Part B), Vol.34, No.1, pp. 752-759, 2004.
- [5] S. Liu and J.Wang, “Obstacle Avoidance for Kinematically Redundant Manipulators Using the Deterministic Annealing Neural Network,” Advances in Neural Networks – ISNN 2005 Lecture Notes in Computer Science, 2005, Vol.3498, pp. 240-246, 2005,
- [6] A. Hayashi and B. J. Kuipers, “Path planning for highly redundant manipulators using a continuous model,” Proc. of the National Conf. on Artificial Intelligence (AAAI-91), pp. 666-672, 1991.
- [7] R. Sutton and A. Barto, “Reinforcement Learning,” MIT Press, 1998.
- [8] H. Kimura, T. Yamashita, and S. Kobayashi, “Reinforcement Learning of Walking Behavior for a Four-Legged Robot,” Proc. of IEEE Conf. on Decision and Control, pp. 411-416, 2001.
- [9] J. Morimoto and K. Doya, “Acquisition of stand-up behavior by a real robot using hierarchical reinforcement learning,” Robotics and Autonomous Systems Vol.36, No.1, pp. 37-51, 2001.
- [10] H. Miyamoto, J. Morimoto, K. Doya, and M. Kawato, “Reinforcement learning with via-point representation,” Neural Networks, Vol.17, No.3, pp. 299-305, 2004.
- [11] K. Ito and F. Matsuno, “Control of hyper-redundant robot using QDESEGA,” Proc. of SICE Annual Conf. 2002, pp. 1677-1682, 2002.
- [12] R. Miikulainen, “Script Recognition with Hierarchical Feature Maps,” Connection Science Vol.2, pp. 83-101, 1990.
- [13] M. Asada, K. MacDorman, H. Ishiguro, and Y. Kuniyoshi, “Cognitive developmental robotics as a new paradigm for the design of humanoid robots,” Robotics and Autonomous Systems, Vol.37, pp. 185-193, 2001.
- [14] A. Stoytchev, “Some basic principles of developmental robotics,” IEEE Trans. on Autonomous Mental Development, Vol.1, No.2, pp. 122-130, 2009.
- [15] T. Okamoto, Y. Kobayashi, and M. Onishi, “Acquisition of Body and Object Representation Based on Motion Learning and Planning Framework,” Proc. of the 9th Int. Conf. on Intelligent Systems Design and Applications, pp. 737-742, 2009.
- [16] T. Asamizu and Y. Kobayashi, “Acquisition of image feature on collision for robot motion generation,” Proc. 9th Int. Conf. on Intelligent Systems Design and Applications, pp. 1312-1317, 2009.
- [17] Y. Kobayashi, M. Shibata, S. Hosoe, and Y. Uno, “Learning of object manipulation with stick/slip mode switching,” Proc. of Int. Conf. on Intelligent Robots and Systems, pp. 373-379, 2008.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.