Paper:
Online Signature Verification Based on User-Generic Fusion Model with Markov Chain Monte Carlo, Taking into Account User Individuality
Kyosuke Koishi*, Shintaro Kinoshita*, Daigo Muramatsu**,
and Takashi Matsumoto***
*Department of Electrical Engineering and Bioscience, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
**Department of Electrical and Mechanical Engineering, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan
***Graduate School of Advanced Science and Engineering, Waseda University. 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
- [1] A. Jain, A. Ross, and S. Prabhakar, “An introduction to biometric recognition,” IEEE Trans., Circuits Syst. Video Tech., Vol.14, No.1, pp. 4-20, 2004.
- [2] T. Matsumoto, H. Matsumoto, K. Yamada, and S. Hoshino, “Impact of Artificial “Gummy” Fingers on Fingerprint Systems,” Proc. of SPIE, Vol.4677, pp. 275-289, 2002.
- [3] S. Kinoshita, D. Muramatsu, and T. Matsumoto “Online signature verification based on user-generic fusion model with Markov chain Monte Carlo method,” ISPACS 2006, pp. 391-394, Dec., 2006.
- [4] R. Plamondon and G. Lorette, “Automatic signature verification and writer identification: the state of the art,” Pattern Recognition, Vol.22, No.2, pp. 107-131, 1989.
- [5] F. Leclerc and R. Plamondon, “Automatic signature verification: the state of the art 1989-1993,” Int. Journal of Pattern Recognition and Artificial Intelligence, Vol.8, No.3, pp. 643-660, 1994.
- [6] V. S. Nalwa, “Automatic on-line signature verification,” Proc. IEEE, Vol.85, No.2, pp. 215-239, 1997.
- [7] R. Plamondon and S. N. Srihari, “On-line and off-line handwriting recognition: A Comprehensive Survey,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.22, No.1, pp. 63-84, 2000.
- [8] J. Brault and R. Plamondon, “Segmenting handwritten signatures at their perceptually important point,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.15, No.9, pp. 953-957, 1993.
- [9] R. Plamondon, “The design of an on-line signature verification system: from theory to practice,” Int. Journal of Pattern Recognition and Artificial Intelligence, Vol.8, No.3, pp. 795-811, 1994.
- [10] Y. Sato and K. Kogure, “Online signature verification based on shape, motion, and writing pressure,” Proc. 6th Int. Conf. on Pattern Recognition, Vol.2, pp. 823-826, 1982.
- [11] I. Yoshimura, M. Yoshimura, and S. Matsuda, “Choice of multiple representative signatures for on-line signature verification using a clustering procedure,” Proc. Conf. of Int. Federation of Classification Societies, pp. 247-250, 1996.
- [12] L. L. Lee, T. Berger, and E. Avizer, “Reliable on-line human signature verification systems,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.18, No.6, pp. 643-647, 1996.
- [13] T. H. Rhee, S. J. Cho, and J. H. Kim, “On-line signature verification using model-guided segmentation and discriminative feature selection for skilled forgeries,” Proc. Int. Conf. on Document Analysis and Recognition, Seattle, Washington, pp. 645-649, 2001.
- [14] A. K. Jain, F. D. Griess, and S. D. Connell, “On-line signature verification,” Pattern Recognition, Vol.35, No.12, pp. 2963-2972, 2002.
- [15] J. Fierrez-Aguilar, L. Nanni, J. Lopez-Penalba, J. Ortega-Garcia, and D. Maltoni, “An on-line signature verification system based on fusion of local and global information,” Springer Lecture Note in Computer Science, Proc. Audio- and Video-Based Biometric Person Authentication, Vol.3546, pp. 523-532, 2005.
- [16] B. L. Van, S. Garcia-Salicetti, and B. Dorizzi, “Fusion of HMM’s likelihood and viterbipath for on-line signature verification,” Springer Lecture Notes in Computer Science, Proc. ECCV 2004 Int. Workshop, BioAW2004, Vol.3087, pp. 318-331, 2004.
- [17] M. E. Munich and P. Perona, “Visual identification by signature tracking,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.25, No.2, pp. 200-217, 2003.
- [18] D. Muramatsu, M. Kondo, M. Sasaki, S. Tachibana, and T. Matsumoto, “A Markov chain Monte Carlo algorithm for Bayesian dynamic signature verification,” IEEE Trans. Information Forensic and Security, Vol.1, Issue 1, pp. 22-34, 2006.
- [19] D.-Y. Yeung, H. Chang, Y. Xiong, S. George, R. Kashi, T. Matsumoto, and G. Rigoll, “SVC2004: First international signature verification competition,” Springer Lecture Notes in Computer Science, Vol.3702, pp. 16-22, 2004.
- [20] BioSecure Multimodal Evaluation Campaign (BMEC),
http://biometrics.it-sudparis.eu/BMEC2007/ - [21] S. Garcia-Salicetti, C. Beumier, G. Chollet, B. Dorizzi, J. Leroux-Les Jardins, J. Lunter, Y. Ni, and D. Petrovska-Delacretaz,“BIOMET: a multimodal person authentication database including face, voice, fingerprint, hand and signature modalities,” Springer Lecture Notes in Computer Science, 4th Int. Conf. on Audio and Video-Based Biometric Person Authentication, pp. 845-853, 2003.
- [22] J. Ortega-Garcia, J. Fierrez-Aguilar, D. Simon, J. Gonzalez, M. Faundez-Zanuy, V. Espinosa, A. Satue, and I. Hemaez, “MCTY baseline corpus: a bimodal biometric database,” IEE Proc. Vision, Image and Signal Processing, Vol.150, No.6, pp. 395-401, 2003.
- [23] R. Bellman, “Dynamic Programming,” Princeton University Press, 1957.
- [24] R. O. Duda, P. E. Hart, and D. G. Stork, “Pattern Classification,” JOHN WILEY & SONS, INC., Sec. 10.4.3, pp. 526-528, 2001.
- [25] D. J. C. MacKay, “Bayesian methods for adaptive models,” Ph.D. thesis, California Inst. Tech, 1991.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.