Paper:
Clustering Based on Multiple Criteria for LVQ and K-Means Algorithm
Fujiki Morii* and Kazuko Kurahashi**
*Dept. of Information and Computer Sciences, Nara Women's University, Nara 630-8506, Japan
**FUJIFILM Corporation, Medical Systems Business DIV., Kanagawa 238-8538, Japan
- [1] R. O. Duda, P. E. Hart, and D. G. Stork, “Pattern Classification (2nd edition),” John Wiley & Sons, INC., 2001.
- [2] A. K. Jain and R. C. Dubes, “Algorithms for Clustering Data,” Prentice-Hall, Englewood Cliffs, NJ, 1988.
- [3] A. D. Gordon, “Classification (2nd Edition),” Chapman & Hall/CRC, 1999.
- [4] J. C. Bezdek, “Pattern Recognition with Fuzzy Objective Function Algorithms,” Plenum Press, NY, 1981.
- [5] J. MacQueen, “Some Methods for Classification and Analysis of Xk Multivariate Observations,” Proc. 5th Berkeley Symp. on Math. Stat. and Prob. 1, Univ. of California Press, Berkeley and Los Angelessplitting measure, pp. 281-297, 1967.
- [6] Y. Linde, A. Buzo, and R. M. Gray, “An Algorithm for Vector Quantizer Design,” IEEE Trans. Commun., Vol.28, pp. 84-95, 1980.
- [7] T. Kohonen, “Self-Organizing Maps, 2nd Ed.,” Springer, Berlin, 1997.
- [8] N. R. Pal, J. C. Bezdek, and C.-K. Tsao, “Generalized Clustering Networks and Kohonen's Self-Organizing Scheme,” IEEE Trans. Neural Network, Vol.4, No.4, pp. 549-557, 1993.
- [9] S. Miyamoto, “Introduction of Cluster Analysis:Theory and Applications of Fuzzy Clustering,” Morikita-Syuppan, 1999 (in Japanese).
- [10] T. Kaukoranta, P. Franti, and O. Nevalainen, “Iterative split-and-merge algorithm for vector quantization codebook generation,” Optical Engineering Vol.37, No.10, pp. 2726-2732, 1998.
- [11] F. Morii and K. Kurahashi, “Clustering by the K-means algorithm using a split and merge procedure,” Proc. of SCIS and ISIS 2006, pp. 1767-1770, 2006.
- [12] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, “Numerical Recipes in C,” Cambridge University Press, 1988.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.